Обратите внимание, что в предлагаемом нами определении измерения говорится, что оно «выражено количественно». Неопределенность в любом случае следует выразить количественно, хотя объект наблюдения может быть вовсе не количественной величиной, а качественной, скажем, обозначать принадлежность к какому-либо множеству. Например, можно «измерить» что-то, ответив «да» или «нет» (допустим, произойдет ли в этом году утечка данных или будет ли предъявлен иск по киберстрахованию), и это все еще будет точно соответствовать нашему определению измерения. Однако степень неопределенности в отношении подобных наблюдений все равно должна быть выражена количественно, например: существует 15 %-ная вероятность утечки данных в этом году, существует вероятность 20 % предъявления иска по киберстрахованию и т. д.
Точка зрения, в соответствии с которой измерения применимы к вопросам с ответом «да/нет» и прочим качественным признакам, согласуется с другим признанным направлением научной мысли в области измерений. В 1946 году психолог Стэнли Смит Стивенс опубликовал статью On the Theory of Scales and Measurement (Теория шкал и измерений)3. В ней описаны четыре различные шкалы измерения: номинальная, порядковая, интервальная и отношений. Если вы думаете о градусах Цельсия или долларах как единицах измерения, то вы используете интервальную шкалу и шкалу отношений соответственно. У обеих шкал есть четко определенная единица стандартной величины. В обоих случаях можно сказать, что 6 на 2 больше, чем 4 (6 градусов Цельсия или 6 долл.). Однако интервальная шкала не позволяет сказать, что 6 «на 50 % больше», чем 4, или «в два раза больше», чем 3. Например, 6 градусов Цельсия не «в два раза жарче», чем 3 градуса Цельсия (поскольку положение нуля на шкале Цельсия установлено произвольно в точке замерзания воды). А вот 6 млн долл. в два раза больше, чем 3 млн. То есть для интервальных шкал неактуальны некоторые математические вычисления, например умножение или деление.
Номинальные и порядковые шкалы еще более ограничены. У номинальной шкалы нет подразумеваемого порядка или величины, сюда можно отнести указание пола индивида, местоположения объекта или наличие у системы определенного признака. Номинальная шкала выражает состояние, не указывая, что одно состояние в два раза больше другого, или, если уж на то пошло, хотя бы просто больше или меньше оно относительно другого. Каждая шкала состояния – это просто иное состояние, не большее или меньшее. Порядковые шкалы, с другой стороны, ранжируют, но не сравнивают величины. Администратор обладает бóльшими правами, чем обычный пользователь, но при этом нельзя сказать, что его права в пять раз больше, чем у обычного пользователя, и в два раза больше, чем у другого пользователя. Поэтому большинство математических операций – кроме базовых логических или операций со множествами – неприменимы к номинальным или порядковым шкалам.
Тем не менее номинальные и порядковые шкалы могут быть информативными, даже несмотря на их отличия от более традиционных шкал измерения, таких как килограммы или секунды. Геологам полезно знать, что одна горная порода тверже другой, но не обязательно знать насколько. Метод, применяемый ими для сравнения твердости минералов, называется «шкала твердости Мооса», и используемая в нем шкала является порядковой.
Таким образом, использование порядковых шкал, подобных тем, что часто встречаются в области кибербезопасности, строго говоря, не противоречит концепции измерений, а вот то, как это делается, к чему применяется и что происходит с этими значениями потом, действительно нарушает основные принципы и может вызвать массу проблем. Геологи не умножают значения по шкале твердости Мооса на цвет породы. И хотя значение по шкале твердости Мооса – четко определенное измерение, в порядковых шкалах в области кибербезопасности такой четкости часто нет.
Позже мы покажем, что измерения, основанные на четко определенных величинах, таких как ежегодная вероятность события и вероятностное распределение потенциальных потерь, предпочтительнее, чем порядковые шкалы, обычно используемые в сфере кибербезопасности. На самом деле, в науке и технике ничего не зависит от порядковых шкал. Даже шкалу твердости Мооса часто заменяют другой: вне геологии для оценки материалов в научных и инженерных задачах более подходящей считается шкала Виккерса, являющаяся шкалой отношений.
Всё это важные особенности концепции измерений, из которых могут извлечь полезные уроки как руководители в целом, так и специалисты по кибербезопасности в частности. В распространенном представлении об измерениях как о точных значениях игнорируется полезность простого уменьшения неопределенности, если ее устранение невозможно или экономически нецелесообразно. Да и не все измерения требуется сводить к количеству в традиционном понимании. Измерения применяются как к дискретным, номинальным аспектам, которые требуется прояснить, таким как «Произойдет ли у нас крупная утечка данных?», так и к непрерывным величинам, например «Во сколько нам обойдется утечка данных, если она произойдет?». В бизнесе лица, принимающие решения, делают свой выбор в условиях неопределенности. И если эта неопределенность касается важных, связанных с риском решений, то ее уменьшение имеет большую ценность. Именно поэтому мы будем использовать данное нами определение измерений.