В Excel обратная функция вероятности для нормального распределения выглядит так:
=НОРМОБР(вероятность; среднее; стандартное_откл)
(Примечание: в последних версиях Excel также используется функция НОРМ.ОБР, но НОРМОБР тоже работает.) Если заменить аргумент «вероятность» на функцию СЛЧИС(), то получится нормально распределенное случайное число с указанным средним значением и стандартным отклонением. Стандартное отклонение – своего рода мера ширины распределения вероятности, но на самом деле эту величину специалистам очень трудно определить интуитивно. Лучше просто попросить эксперта назвать 90 %-ный доверительный интервал, как описывалось ранее. ДИ можно использовать для вычисления необходимых параметров среднего значения и стандартного отклонения на основе верхнего и нижнего пределов (ВП и НП) диапазона потенциальных убытков, предоставленного экспертом.
Этот диапазон мы превратим в распределение вероятности определенного типа, которое будем часто применять: логнормальное распределение, представляющее собой разновидность более привычного колоколообразного нормального распределения. Это просто нормальное распределение по логарифму значения, которое мы хотим смоделировать, и оно обычно гораздо точнее отображает реальность.
Рис. 3.1. Сравнение логнормального и нормального распределений
На рис. 3.1 показан пример подобного распределения в сравнении с нормальным. Обратите внимание, что логнормальное распределение, в отличие от нормального, выглядит однобоким или «перекошенным». При логнормальном распределении не может получиться нулевое или отрицательное число, но у него имеется хвост справа, допускающий получение очень больших значений в результатах. Именно поэтому логнормальное распределение часто реалистично отражает вероятность различных сумм убытков. Нормальное распределение достаточно широкое, чтобы охватить некоторые экстремальные события, однако оно может также выдавать нелогичные отрицательные результаты на другом конце шкалы (не может быть отрицательного количества взломанных учетных записей или отрицательного времени простоя системы). Вот почему логнормальное распределение используют еще и для моделирования различных величин, которые не могут быть отрицательными, но способны (хотя и редко) оказываться очень большими.
Для получения логнормального распределения в примере, представленном на сайте книги, применяется следующая формула Exceclass="underline"
= ЛОГНОРМОБР(СЛЧИС();среднее ln(X);стандартное_отклонение ln(X)),
где:
стандартное_отклонение ln(X) = (ln(ВП) – ln(НП))/3,29)
среднее ln(X) = (ln(ВП) + ln(НП))/2)
Таким образом, если нами получен 90 %-ный ДИ для воздействия от 100 000 до 8 млн долл., тогда среднее и стандартное отклонение, которые должны использоваться в функции ЛОГНОРМОБР (т. е. среднее значение и стандартное отклонение логарифма исходного распределения), будут равны:
среднее ln(x) = (ln(8000000) + ln(100000)) / 2 = 13,7
стандартное_отклонение ln(x) =
(ln(8000000) – ln(100000)) / 3,29 = 1,33
Определение убытков от события, у которого вероятность возникновения составляет 5 %, а воздействие – от 1 до 9 млн долл., можно записать так:
= ЕСЛИ(СЛЧИС() < 0,05; ЛОГНОРМОБР(СЛЧИС(); (ln(9000000) + ln(1000000)) / 2;
(ln(9000000) – ln(1000000)) / 3,29); 0)
В большинстве случаев (95 %) эта функция будет выдавать ноль. И только в 5 % случаев она сгенерирует значение, которое с вероятностью 90 % попадет в диапазон от 1 до 9 млн долл. Обратите внимание, что, поскольку это 90 %-ный ДИ, существует вероятность 5 %, что значение окажется ниже нижнего предела (но выше нуля, так как логнормальное распределение может давать только положительные значения), и вероятность 5 %, что оно будет выше верхнего предела, иногда намного выше. Так, если в приведенном выше примере событие происходит, то существует вероятность 1 %, что убытки могут превысить 14,2 млн долл.
Логнормальные распределения следует применять осторожно. Экстремальные значения убытков заданного 90 %-ного ДИ могут оказаться нереалистичными, если верхний предел во много раз превысит нижний. Так происходит, когда эксперт, оценивающий значение, ошибочно решает, что верхний предел представляет собой наихудший вариант, а это не так. Верхний предел 90 %-ного доверительного интервала допускает с вероятностью 5 %, что значение будет больше. Экстремальные результаты также чувствительны к нижнему пределу. Если 90 %-ный ДИ составляет от 10 000 до 1 млн долл., то верхний предел оказывается в 100 раз больше нижнего. В этом случае существует вероятность 1 %, что убытки в 2,6 раза превысят заявленный верхний предел (составят 2,6 млн долл.). Если же 90 %-ный ДИ составляет от 1000 до 10 млн долл., то убытки с вероятностью 1 % будут больше верхнего предела более чем в 6,7 раза (67 млн долл.).