Труденъ и очень труденъ былъ римскій способъ, значительно труднѣе, чѣмъ «дѣленіе внизу» и «дѣленіе вверху».
Обременительность его зависѣла прежде всего отъ его сложности, но кромѣ того, еще и отъ того, что педагоги и составители учебниковъ или не умѣли, или не хотѣли объяснить дѣло, какъ слѣдуетъ. Высокимъ, ученымъ слогомъ, безъ обращенія къ чему-нибудь наглядному и понятному, они вели бесѣду такъ, какъ будто передъ ними находились тоже ученые люди или педагоги, а не малыя дѣти: тогдашняя школа мѣряла все на аршинъ учителя и не примѣнялась къ возрасту и развитію ученика.
Вотъ выписка изъ книжки Сперанскаго (Очерки по исторіи народной школы въ Западной Европѣ, стр. 118, заимств. изъ Гюнтера): При дѣленіи 5069 на 4, дѣйствія располагаются слѣдующимъ образомъ. Мы имѣемъ: 10—4=6,
Образуемъ теперь произведеніе
откуда мы получаем 600 + 800 = 1400. Точно также:
600+400=1000. Пользуясь все тѣмъ же пріемомъ, вычисляемъ произведеніе
и образуемъ сумму 60+80+60+60=260. Далѣе:
а 60+20+60=140. Двигаясь тѣмъ же путемъ далѣе, мы получимъ:
6+8+6+9=29. Затѣмъ находимъ
эта сумма, подобно дѣлитеkю, является уже числомъ меньшимъ 10-ти. Такимъ образомъ оказывается, что остатокъ отъ дѣленія равенъ 1. Искомое частное 1267. Первоначально римскій способъ примѣнялся на абакѣ, при помощи римскихъ цифръ; но съ теченіемъ времени, когда въ Европу проникли арабскія цифры, онъ сталъ примѣняться и на нихъ и долго не уступалъ своего мѣста новымъ пріемамъ. Теперь онъ уже совершенно оставленъ и рѣшительно нигдѣ не встрѣчается. А между тѣмъ и у него есть нѣкоторое удобство, которое возвышаетъ его въ этомъ отношеніи: именно легкое угадываніе цифръ частнаго. Въ нашемъ нормальномъ дѣленіи иногда случается задаваться не тою цифрою, какая нужна, а большей или менmiей; у римлянъ же это могло случаться гораздо рѣже, потому что дѣлителемъ у нихъ всегда служило круглое число, про которое легко найти, сколько разъ оно содержится въ дѣлимомъ.
Приведемъ образцы письменнаго расположенія по этому способу. Примѣры: 672 : 16 и 3276 : 84.
Другіе способы дѣленія.
1) Самымъ простымъ, общедоступнымъ путемъ дѣленія, правда длиннымъ и утомительнымъ, является замѣна дѣленія вычитаніемъ; поэтому всѣ народы, которые находятся на низшихъ ступеняхъ развитія, производятъ дѣленіе при ломощи вычитанія: потому также полезно было бы давать и малымъ дѣтямъ нѣсколько упражненій на послѣдовательное вычитаніе, прежде чѣмъ переходить съ ними къ дѣленію. Примѣровъ замѣны дѣленія вычитаніемъ можно указать много у разныхъ народовъ, особенно же среди мало образованныхъ классовъ. Такъ, въ средніе вѣка въ Германіи среди простого народа часто употреблялся счетъ на маркахъ, т.-е. на костяшкахъ—костяшки эти клались въ колонны, въ особую колонну для каждаго разряда— въ такомъ случаѣ дѣлитель откладывался отъ дѣлимаго столько разъ, сколько было возможно, и число отложенныхъ дѣлителей показывало величину отвѣта, потому что раздѣлить—значитъ узнать, сколько разъ дѣлитель содержится въ дѣлимомъ.
2) Замѣна дѣленія умноженіемъ нѣсколько труднѣе, чѣмъ замѣна его вычитаніемъ; она не такъ доступна, понятна и наглядна; ее мы встрѣчаемъ на тѣхъ ступеняхъ развитія науки, когда совершается переходъ отъ простонародныхъ пріемовъ вычисленія къ точнымъ научнымъ пріемамъ. Такъ, напр., у индусовъ до выработки нормальныхъ способовъ дѣленія мы видимъ массу попытокъ привести его къ умноженію; при этомъ и само умноженіе совершается такимъ искусственнымъ порядкомъ, какой встрѣчается еще въ глубокой древности у египтянъ, распространенъ былъ среди всѣхъ народовъ и пользуется до сегодня популярностью среди самоучекъ и немудрыхъ счетчиковъ. Для поясненія беремъ примѣръ у Евтокія, греческаго писателя въ VI в. по Р. X. Требуется раздѣлить 6152 на 15. Для этого Евтокій составляетъ рядъ чиселъ, кратныхъ 15-ти: 15, 30, 60, 90, 120,150, 180, 210: 240, 270, 300, 600, 900,1200, 1800, 2100, 2400, 2700, 3000, 6000. Рядъ этотъ, какъ видимъ, содержитъ не всѣ кратныя числа, но онъ только пролагаетъ путь къ тому, чтобы догадаться, что 6000 кратно 15, и что въ 6000 содержится 15 четыреста разъ. Остается теперь раздѣлить 152 на 15. Для этого Евтокій снова соcтавляетъ подобный же рядъ: 15, 30, 60, 90, 150 и выводитъ, что 15 въ 150-ти содержится 10 разъ. Всего въ отвѣтѣ получится 410 и 2 въ. остаткѣ.
3) Слѣдующей попыткой къ упрощенію дѣленія является расчлененіе дѣлителя на производителей; оно и теперь примѣняется съ большимъ успѣхомъ, особенно при устномъ счетѣ; именно, чтобы раздѣлить, напр., на 8, можно раздѣлить данное число пополамъ, полученный отвѣтъ опять пополамъ и вновь полученный отвѣтъ еще разъ пополамъ. Для письменнаго вычисленія такой порядокъ особенно рекомендуется итальянцемъ Леонардо Фибонначи (около 1200 г. по Р. X.); при этомъ, въ случаѣ дробнаго частнаго, у него получаетея рядъ дробей съ возрастающиии знаменателями.
Оригинальный пріемъ, основанный на той же идеѣ, даетъ Апіанъ (XVI в. по Р. X.); у него проскальзываетъ нѣчто въ родѣ десятичныхъ дробей, хотя въ его время теорія десятичныхъ дробей находилась въ самомъ зачаточномъ состояніи.
Положимъ, ему надо раздѣлить 11664 на 48; онъ сперва вычисляетъ 11664:6, потомъ отъ каждаго полученнаго разряда беретъ вооьмую долю, это легко достигается тѣмъ, что каждый разрядъ по-множается на 0125, такъ какъ 1:8=0,125. Все дѣйствіе можно представить въ такомъ видѣ.
Объясняется это вычисленіе слѣдующимъ образомъ. Дѣлимъ 11 тыс. на 6, получаемъ 5 въ остаткѣ и 1 въ частномъ; 5 пишемъ надъ 1, а единицу частнаго умножаемъ на 0125 и пишемъ прямо подъ чертой. Далѣе, 56 сот.: 6=9 сот. и 2 сотни въ остаткѣ; остатокъ помѣщаемъ надъ 6-ю, а 9 надо умножить на 0125; для этого Апіанъ множитъ отдѣльно 0125 на 5 и на 4, получаетъ 0625 и 05; при записываніи цифра 5 у числа 0625 подвигается вправо за черту, потому что это будутъ уже не цѣлыя единицы, а только десятыг доли. Теперь 26 десятковъ надо дѣлить на 6, будетъ въ частномъ 4 десятка; помножить 4 на 0125, получится 5—столько простых единицъ, ихъ пишемъ. Наконецъ, 24:6 — 4, 4×0125 = 5, это будутъ десятыя доли, и ихъ слѣдуетъ писать за чертой вправо. Остается сложить всѣ отдѣльныя частныя и тогда получится общій отвѣтъ 243.