Выбрать главу

Возвышеніе чиселъ въ квадратъ и кубъ и извлеченіе корней считалось необходимой принадлежностью ариѳметики почти до самаго послѣдняго времени. Эти два правила помѣщались въ ариѳметикѣ до 50-хъ и даже 60-хъ годовъ истекшаго[6] столѣтія. Теперь ихъ пропускаютъ, потому что, чтобы ихъ выяснить толково, надо знать алгебру, и, слѣд., лучшее имъ мѣсто въ алгебрѣ.

Арабскій математикъ Аль-Ховаризми (въ IX в. по Р. X.), въ честь котораго и вся система арабской ариѳметики получила названіе алгоритма, не считалъ нумерацію за дѣйствіе и принималъ только слѣдующія шѣсть: сложеніе, вычитаніе, дѣленіе пополамъ, удвоеніе, умноженіе и дѣленіе. Послѣдовательность дѣйствій у него, какъ видимъ, очень оригинальная, хотя ей нельзя отказать въ большой долѣ цѣлесобразности, въ смыслѣ перехода отъ легкаго къ болѣе трудному. Когда удвоеніе и раздвоеніе были оставлены, то многіе математики начали послѣ сложенія проходить прямо умноженіе, а потомъ ужъ вычитаніе съ дѣленіемъ. И они поступали въ этомъ случаѣ основательно, потому что умноженіе опирается на сложеніе, а дѣленіе можетъ приводиться къ повторительному вычитанію дѣлителя изъ дѣлимаго.

Въ только что минувшемъ XIX столѣтіи нѣкоторые нѣмецкіе педагоги придумали изъ одного дѣленія образовать 2 дѣйствія, именно, во-первыхъ, когда требуется раздѣлить число на нѣсколько равныхъ частей, и, во-вторыхъ, когда надо узнать, сколько разъ одно число содержится въ другомъ. Такое раздѣленіе надо признать излишнимъ, тутъ вовсе нѣтъ 2-хъ различныхъ дѣйствій, а есть только два вида одного дѣйствія, при чемъ въ первомъ видѣ отыскивается множимое по произведенію и множителю, а во второмъ — множитель по произведенію и множимому. Отдѣльные знаки для этихъ 2-хъ видовъ мы также полагали бы лишними: дѣлимъ ли мы, наприм., на пятерыхъ или дѣлимъ на пятки, и тутъ, и тамъ все дѣлимъ, поэтому и можно удовольствоваться однимъ знакомъ.

Поговоримъ теперь о знакахъ ариѳметичесвихъ дѣйствій и прежде всего отмѣтимъ, что потребность въ знакахъ начала чувствоваться такъ же давно, какъ и потребность въ цифрахъ. Какъ цифрами первоначально служили наглядныя фигуры и буквы алфавита, такъ и знаки образовались изъ чертежей и тоже буквъ. Еще древніе египтяне употребляли при сложеніи нѣчто въ родѣ нашего плюса. У грековъ знакомъ сложенія являлась косая черта, при вычитаніи писалась кавычка, и знакомъ равенства служила дуга (см. приложеніе 11-е въ концѣ книги). Позднѣе (въ IV в. по Р. X.) Діофантъ Александрійскій, знаменитый греческій геометръ; ввелъ вмѣсто знака равенства букву і, начальную букву слова «ισοι», что значитъ «равны». Арабы вовсе не употребляли знака сложенія въ томъ случаѣ, когда количества писались рядомъ, потому что, дѣйствительно, здѣсь можно подразумѣвать сложеніе само собой. Знакъ вычитанія у нихъ писался въ видѣ цѣлаго слова, которое, въ переводѣ на русскій языкъ, значитъ «безъ». Вычитаемое арабы ставили налѣво, а уменьшаемое— направо, потому что они, подобно всѣмъ семитическимъ народамъ, располагали слова отъ правой руки къ лѣвой, а не отъ лѣвой къ правой, какъ мы. Знакомъ равенства у нихъ было S; это есть послѣдняя буква слова «равняется». Нашъ настоящій знакъ равенства введенъ въ алгебру Робертомъ Рекордомъ въ 1556 году. Косой крестъ при умноженіи окончательно предложенъ Уттредомъ въ 1631 году. Но и до него этотъ знакъ употреблялся очень чагсто и считался очень удобнымъ, потому что онъ указывалъ не только дѣйствіе, но и порядокъ дѣйствія. Именно, старинный употребительный способъ умноженія былъ способъ «крестика», въ такомъ родѣ:

вернуться

6

19-го, очевидно, т. к. книга писалась в 1906, то истекшее столетие — 19. Примечание авт. док.