Выбрать главу

Приведемъ образецъ вычисленій на римскихъ цифрахъ. Изъ него хорошо видно, насколько сложеніе преобладало надъ умноженіемъ и замѣняло его. Требуется, положимъ, СХХХХIIIІ умножить на XXX. Тогда дѣйствіе располагается слѣдующимъ образомъ:

С · Х = М

С · Х = М

С · Х = М

ХХХХ · XXX = МСС

XXX + XXX + XXX + XXX = СХХ.

Такъ какъ множитель XXX состоитъ изъ X + X + X, то достаточно повторить множимое сперва X разъ, потомъ еще X разъ, и, наконецъ, еще X разъ и полученные отвѣты сложить. Но когда мы начнемъ повторять X разъ, то множимое, въ свою очередь, разложится на отдѣльныя слагаемыя: С + X + X + X + X + IIII; и придется намъ каждое слагаемое перваго числа помножать на каждое слагаемое второго.

21. Двадцать первымъ способомъ будетъ такъ называемый „per aschapezza“. Въ переводѣ съ итальянскаго языка,—способъ чаще другихъ примѣняли итальянцы,—это значитъ способъ «разложенія». Примѣръ: 44×26. Для этого 26 разлагаемъ на какія-нибудь легкія cлагаемыя, обыкновенно однозначныя, въ родѣ 3 + 4 + 5 + 6 + 8, и составляемъ пять произведеній: 44 · 3, 44 · 4, 44 · 5, 44 · 6, 44 · 8. Всѣ ихъ можно легко найти устно, и въ этомъ заключается преимущество подобнаго умноженія. Но иногда, забывая о главномъ условіи удобства, примѣняли этотъ способъ и тогда, когда онъ не даетъ никакого выигрыша ни во времени, ни въ письмѣ. Хорошимъ примѣромъ такого теоретическаго пользованія разложеніемъ можетъ служить помѣщенный въ аріѳметикѣ Брамегупты (VII в.): 235×288, съ разложеніемъ числа 288 на 9 + 8 + 151 + 120. Очевидно Брамегупта, выбирая такія неудобныя слагаемыя, не только не упростилъ дѣіствія, а скорѣе усложнилъ и затруднилъ; но онъ, навѣрное, и не задавался цѣлью упростить и облегчить вычисленіе, а желалъ только представить новую форму умноженія.

22. Какъ мы уже сказали, замѣна умноженія сложеніемъ является самымъ легкимъ и простымъ пріемомъ и въ то же время самымъ старымъ и испытаннымъ. Египтяне за много столѣтій до Р. X. умѣли съ болышшъ искусствомъ, чрезвычайно свободно и остроумно пользоваться этой замѣной. Если, напримѣръ, имъ требовалось умножить на 17, то они сперва складывали множимое само съ собой и получали такимъ образомъ двойное число; его тоже складывали само съ собой, получали четверное число; четверное складывали съ четвернымъ, получали восьмерное; восьмерное съ восьмернымъ, получится 16 ть слагаемыхъ, а такъ какъ ихъ задано набрать 17-ть, то остается добавить только одно слагаемое и отвѣтъ будетъ найденъ. Подобнымъ же образомъ они могли, напримѣръ, вычислять 466 .13. Они составляли 466.2 = 932, 932.2 = 1864, 1864.2 = 3728, затѣмъ складывали восьмерное число съ четвернымъ и съ простымъ и получали 466 .13 = 3728 + 1864 + 466 = 6058. Такимъ путемъ египтяне умѣли добираться до сложныхъ результатовъ, хотя и медленно, но довольно вѣрно и успѣшно. Изъ всѣхъ умноженій у нихъ было только одно удвоеніе; они даже не знали таблицы умноженія. Не они ли пришли къ мыели выдѣлить удвоеніе въ особое дѣйствіе, къ мысли, которая примѣнялась очень долго и едва въ ХУІ столѣтіи была оставлена, потому что съ этого времени удвоеніе вошло въ составъ вообще умноженія.

Покончимъ теперь на египтянахъ и не будемъ уходить далѣе въ глубь вѣковъ, тѣмъ болѣе, что у насъ нѣтъ фактическаго матеріала для этого. Подведемъ итоги всему. что сказали объ умноженіи. Оно начинается съ сложенія равныхъ слагаемыхъ и въ этомъ случаѣ не пользуется никакими особенными правилами, сокращеніями и удобствами. Затѣмъ, благодаря практикѣ, начинаетъ выдѣляться удвоеніе и оно образуетъ фундаментъ новаго дѣйствія—умноженія: по образцу удвоенія легко могли возникнуть другіе подобные разсчеты и удвоеніе натолкнуло на то, чтобы находить тройное число, четверное, десятерное и т. п. Всѣ эти употребительные случаи, повторяясь часто, привели къ таблицѣ умноженія и выдѣлили окончательно дѣйствіе умноженія изъ массы случаевъ сложенія. Тогда же начинается письменное производство этого дѣйствія, сначала въ грубой и несовершенной формѣ, при помощи абака и другихъ похожихъ на него пособій, съ многочисленными стираніями и измѣненіями цифръ; сложеніе отдѣльныхъ произведеній сначала шло попутно, вмѣстѣ съ умноженіемъ разрядовъ, но потомъ его начали относить на самый конецъ и производить тогда, когда уже всѣ произведенія найдены. Въ старинныхъ способахъ умноженія устный счетъ почти не допускался, и всѣ цифры, какія надо, писались безъ пропуска, и въ умѣ ничего не удерживалось: такъ, по крайней мѣрѣ, было въ Западной Европѣ въ средніе вѣка. Ближе къ нашему времени стали примѣнять и устный счетъ, начали помогать письму тѣмъ, что нѣкоторыя цифры удерживали въ умѣ, и такимъ то образомъ развился и принялъ окончательную отдѣлку нашъ современный нормальный способъ умноженія.