Особенное уваженіе къ дробямъ свидѣтельствуетъ авторъ одной славянской рукописи XVII в. Именно, разсуждая о тройномъ правилѣ, онъ говоритъ:
«Нѣсть се дивно, что тройная статія въ цѣлыхъ, но есть похвально, что въ доляхъ».
Разсмотримъ теперь подробно, какъ развилось ученіе о дробяхъ у различныхъ народовъ.
Древніе египтяне задались въ этомъ отношеніи чрезвычайно оригинальной мыслью. Они пользовались только такими дробями, у которыхъ числитель непремѣнно единица; всѣ остальныя дроби они считали неудобными для вычисленія и старались замѣнять ихъ этими основными дробями, т.-е. съ числителемъ, равнымъ единицѣ, такъ что когда египтянину требовалось произвести какое-нибудь дѣйствіе надъ дробями, то онъ сперва замѣнялъ данныя дроби основными, за-тѣмъ дѣлалъ вычисленіе и уже въ концѣ-концовъ изъ ряда основныхъ дробей выводилъ одинъ общій отвѣтъ. Всѣ замѣны, которыя требовалось при этомъ дѣлать, совершались при помощи обширныхъ таблицъ, спеціально заготовленныхъ на этотъ случай. Вотъ какъ начинаются эти таблицы:
Здѣсь между долями подразумѣвается, очевидно, сложеніе, такъ
Съ дробями, у которыхъ числитель больше двухъ, приходилось немало хлопотать, и составителямъ таблицъ досталось немало труда, напр., надъ разложеніемъ дроби 7/29. Ходъ вычисления такой:
При помощи такихъ таблицъ египтяне умѣли обходиться безъ приведенія дробей къ одному знаменателю; для этого они переводили слагаемыя въ основныя дроби на основаніи таблицъ, соединяли всѣ эти основныя дроби въ одну массу и потомъ смотрѣли, опять же руководствуясь таблицами, какой одной дроби равняется вся эта масса. Какъ составлялись подобныя таблицы? Точнаго отвѣта дать сейчасъ нельзя, тѣмъ болѣе, что они заимствованы изъ папируса Ринда, а этотъ папирусъ относится ко времени за 2000 лѣтъ до Р. X. Можно догадываться, что едва ли всѣ строки принадлежатъ одному составителю, вѣрнѣе всего отдѣльные результаты тщательно собирались въ общій сводъ, такъ что на нѣкоторые отвѣты приходилось наталкиваться случайно, при какихъ-нибудь другихъ вычисленіяхъ.
Такъ какъ египтяне пользовались только основными дробями, т.-е. съ числителемъ, равнымъ единицѣ, то они, обыкновенно, вовсе и не писали числителя, а только подразумѣвали его, писали же одного знаменателя; но чтобы не смѣшать дробь съ цѣлымъ числомъ, они надъ цифрами знаменателя ставили точку. Изъ производныхъ же дробей разсматривалась только 2/3 у которой былъ свой знакъ, такъ что эта дробь принималась за какую-то особенную величину, не стоящую въ прямой связи ни съ цѣлыми числами, ни съ дробями.
Арабы, очевидно, подъ вліяніемъ египтянъ, раздѣляли дроби на «выговариваемыя» и «невыговариваемыя». Такіе термины встрѣчаются, напр., въ VIII—IX в. по Р. X. Выговариваемыми дробями были тѣ, у которыхъ числитель единица, а знаменатель отъ 2 до 9; для нихъ есть особенныя названія, въ родѣ нашихъ «половина», «треть» и т. д. Невыговариваемыми дробями были всѣ остальныя, и, напрВыговариваемьши дробями были тѣ, у которыхъ числитель единица, а знаменатель отъ 2 до 9; для нихъ есть особенныя названія, въ родѣнашихъ «половина», «треть» и т. д. Невыговариваемыми дробями были всѣ остальныя, и, напр., 1/13 выражалась описательно такъ: одна изъ тринадцати долей; 1/30 такъ: шестая часть одной пятой.