Въ только что минувшемъ XIX столѣтіи нѣкоторые нѣмецкіе педагоги придумали изъ одного дѣленія образовать 2 дѣйствія, именно, во-первыхъ, когда требуется раздѣлить число на нѣсколько равныхъ частей, и, во-вторыхъ, когда надо узнать, сколько разъ одно число содержится въ другомъ. Такое раздѣленіе надо признать излишнимъ, тутъ вовсе нѣтъ 2-хъ различныхъ дѣйствій, а есть только два вида одного дѣйствія, при чемъ въ первомъ видѣ отыскивается множимое по произведенію и множителю, а во второмъ — множитель по произведенію и множимому. Отдѣльные знаки для этихъ 2-хъ видовъ мы также полагали бы лишними: дѣлимъ ли мы, наприм., на пятерыхъ или дѣлимъ на пятки, и тутъ, и тамъ все дѣлимъ, поэтому и можно удовольствоваться однимъ знакомъ.
Поговоримъ теперь о знакахъ ариѳметичесвихъ дѣйствій и прежде всего отмѣтимъ, что потребность въ знакахъ начала чувствоваться такъ же давно, какъ и потребность въ цифрахъ. Какъ цифрами первоначально служили наглядныя фигуры и буквы алфавита, такъ и знаки образовались изъ чертежей и тоже буквъ. Еще древніе египтяне употребляли при сложеніи нѣчто въ родѣ нашего плюса. У грековъ знакомъ сложенія являлась косая черта, при вычитаніи писалась кавычка, и знакомъ равенства служила дуга (см. приложеніе 11-е въ концѣ книги). Позднѣе (въ IV в. по Р. X.) Діофантъ Александрійскій, знаменитый греческій геометръ; ввелъ вмѣсто знака равенства букву і, начальную букву слова «ισοι», что значитъ «равны». Арабы вовсе не употребляли знака сложенія въ томъ случаѣ, когда количества писались рядомъ, потому что, дѣйствительно, здѣсь можно подразумѣвать сложеніе само собой. Знакъ вычитанія у нихъ писался въ видѣ цѣлаго слова, которое, въ переводѣ на русскій языкъ, значитъ «безъ». Вычитаемое арабы ставили налѣво, а уменьшаемое— направо, потому что они, подобно всѣмъ семитическимъ народамъ, располагали слова отъ правой руки къ лѣвой, а не отъ лѣвой къ правой, какъ мы. Знакомъ равенства у нихъ было S; это есть послѣдняя буква слова «равняется». Нашъ настоящій знакъ равенства введенъ въ алгебру Робертомъ Рекордомъ въ 1556 году. Косой крестъ при умноженіи окончательно предложенъ Уттредомъ въ 1631 году. Но и до него этотъ знакъ употреблялся очень чагсто и считался очень удобнымъ, потому что онъ указывалъ не только дѣйствіе, но и порядокъ дѣйствія. Именно, старинный употребительный способъ умноженія былъ способъ «крестика», въ такомъ родѣ:
26
X
34
Чтобы умножить 26 на 34, брали 4 отдѣльныхъ произведенія: 20×4, 6×30, 6×4, 20×30, изъ нихъ два вертикально и два крестъ на крестъ. Этотъ способъ иначе называется хіазмомъ, потому что косой крестъ походитъ на греческую букву χ (хи), и самый знакъ умноженія назывался иногда «хи». Замѣчательно, что онъ же продолжительное время служилъ и знакомъ дѣленія дробей, такъ какъ въ этомъ случаѣ тоже приходится выполнять дѣйствіе крестъ накрестъ: числителя одной дроби помножать на знаменателя другой. Христіанъ Вольфъ въ XVIII ст. предложилъ обозначать умноженіе точкой. Наши знаки плюсъ и минусъ въ ихъ нормальной формѣ встрѣчаются въ первый разъ около 1489 г. въ ариѳметикѣ лейпцигскаго профессора Видмана. Съ 1600 г. уже во всѣхъ четырехъ дѣйствіяхъ можно видѣть настоящіе знаки.
Теперь поведемъ рѣчь объ опредѣленіяхъ дѣйствій. Что показываетъ опредѣленіе? Оно указываетъ смыслъ дѣйствія и его сущность. Такъ, напр., опредѣленіемъ умноженія цѣлыхъ чиселъ служитъ слѣдующее: «умноженіемъ называется такое ариѳметическое дѣйствіе, въ которомъ составляется сумма столькихъ слагаемыхъ, равныхъ первому даному числу, сколько единицъ заключается во второмъ данномъ числѣ». Надо сказать, что опредѣленія въ первоначальной арабской ариѳметикѣ были короткими и понятными и употреблялись только тогда, когда въ нихъ дѣйствительно являлась надобность, т.-е. когда дѣйствіе безъ опредѣленія представлялось неяснымъ и смѣшивалось съ другимъ. Но, въ противоположность этому, средневѣковая школьная ученость (такъ назыв. схоластика) начала придавать словеснымъ опредѣленіямъ слишкомъ большое значеніе, начала требовать опредѣленій даже и въ тѣхъ случаяхъ, когда и безъ нихъ понятія ясны, просты и не смѣшиваются. Къ этому еще присоединилось увлеченіе мнимо-научнымъ языкомъ, когда стремились нарочно выражатьея туманно, тяжеловѣсно, нагромождая фразу на фразу, и все это съ цѣлымъ рядомъ придаточныхъ предложеній, въ грудѣ которыхъ нерѣдко было трудно дойти до истиннаго смысла. Излишнія и тяжело выраженныя опредѣлевія не мало мучили учащихся; средневѣковая варварская латынь и хитроумная риторика ложились тяжелымъ бременемъ на умственныя силы учениковъ и мало содѣйствовали уясненію основныхъ математическихъ понятій. И въ наши дни замѣтно еще нѣкоторое вліяніе средневѣковой схоластики, особенно въ нѣмецкой школѣ. Недаромъ знаменитый русскій педагогъ Ушинскій говоритъ: