26. Закончимъ нашу бесѣду объ умноженіи объясненіемъ послѣдняго, въ высшей степени оригинальнаго пріема, который незнающаго наблюдателя можетъ даже поразить. Передаютъ, будто одинъ нѣмецкій школьный учитель показалъ дѣтямъ это умноженіе, а потомъ при посѣтителяхъ спрашивалъ считать устно и приводилъ въ удивленіе быстротой счета, разумѣется въ томъ случаѣ, если посѣтитель не зналъ секрета.
Учнтель: «83×87!»
— Ученикъ: «80×90 = 7200 да 3-жды семь 21, всего 7221».
—Учитель: «24×26!»
—Ученикъ: «20×30 = 600, да четырежды шесть 24, всего 624».
— Учитель: «92 × 98!»
—Ученикъ «90 × 100 = 9000, да дважды восемь 16, всего 9016».
Секретъ, какъ видно, заключается въ томъ, что не всякій примѣръ годится для этого правила, а только такой, гдѣ бы десятки въ обоихъ множителяхъ были одинаковыми, а единицы составляли въ суммѣ десять; такъ что если взять одинъ множитель, наприм., 41, то парнымъ къ нему множителемъ обязательно долженъ быть 49. Правило для подобныхъ примѣровъ слѣдующее: надо десятки помножить на слѣдующіе десятки (40×50=2000), а единицы просто перемножить (1×9 = 9) и все сложить: 2000 + 9 = 2009. Правило это далъ итальянецъ Тарталья (XVI в.), большой изобрѣтатель разныхъ способовъ, и письменныхъ, и устныхъ.
Объяснимъ послѣдній примѣръ: 41×49. Какъ бы мы попросту стали его вычислять? Сперва 40 помножили бы на 40, потомъ 40 на 9, потомъ 1 на 40 и, наконецъ, 1 на 9. Намъ пришлось бы 40 повторить 40 разъ и 9 разъ и еще 1 разъ, потому что 1 × 40 все равно, что 40 × 1; такимъ образомъ 40 надо помножить на 50, да 1 на 9, всего 2009.
Подобные пріемы, дѣйствительно, даютъ при устномъ счетѣ громадную выгоду и удобство. Смѣло рекомендуемъ ихъ вниманію любителей ариѳметики.
Дѣленіе.
«Dura cosa e la partita»—звучитъ старинная итальянская поговорка, которая значитъ въ русскомъ переводѣ: «трудная вещь—дѣленіе». Не даромъ Лука де-Бурго, итальянскій математикъ XVI вѣка, утѣшаетъ начинающихъ учиться юношей и говоритъ, что «кто умѣетъ дѣлить, тому все остальное пустяки, потому что все заключается въ дѣленіи». И нашъ Магницкій не отстаетъ въ этомъ случаѣ и тоже, кончивши дѣленіе, вздыхаетъ свободно и назидаетъ своихъ «мудролюбивыхъ отроковъ» стихами:
Первую часть докончивше И вся въ цѣлыхъ изучивше, Ихъ въ памяти твердо держимъ И за та вся Бога блажимъ, Что даде намъ безъ напасти Зрѣти конецъ первой части.Трудно дѣленіе нашимъ школьникамъ и въ настоящее время. Но неизмѣримо, безконечно труднѣе было оно въ старинныя времена и особенно въ началѣ среднихъ вѣковъ. Тогда изъ столкновенія римской и арабской учености не успѣло еще выработаться сколько-нибудь сносной системы, да кромѣ того, самъ характеръ преподаванія, котораго держались тогда въ монастырскихъ школахъ, былъ сухъ, безсердеченъ, неприноровленъ къ силамъ дѣтей и требовалъ отъ нихъ нечеловѣческаго напряженія. Тотъ, кто оказывался въ состояніи понимать дѣленіе, признавался чуть не геніемъ и ему давали почетный титулъ «доктора абака», въ родѣ нашего «доктора математики» или «доктора медицины». Нормальнымъ, зауряднымъ дѣтямъ нечего было и мечтать о такомъ трудномъ, мудреномъ дѣйствіи, и они скромно ограничивались сложеніемъ и вычитаніемъ, съ придачей таблицы умноженія. Вотъ что значило неумѣнье преподавать, отсутствіе понятныхъ учебниковъ и усложненность вычисленій. Вотъ откуда пошло вредное повѣрье, будто для математики надо родиться со спеціальными способностями, и что кто не рожденъ атематикомъ, тотъ не будетъ въ ней успѣвать, несмотря на свое стараніе и на искусство учителя. Смѣшно теперь слышать, что средневѣковые педагоги требовали прирожденныхъ способностей для умноженія и дѣленія: вѣдь, въ наше время съ ними удачно справляется всякій мальчикъ въ сельской школѣ и всякая дѣвочка; но курьезъ сохраняется и въ наши дни, когда съ авторитетнымъ видомъ заявляютъ, что для алгебры и геометріи нужны какія-то особыя исключительно математическія способности. Онѣ, конечно, нужны, но лишь въ такой мѣрѣ, въ какой и для каждаго учебнаго предмета, и виной неуспѣха слѣдуетъ признать, обыкновенно, не отсутствіе способностей, а плохое преподаваніе, особенно вначалѣ, когда разрабатываются элементы, основы предмета, и когда зарождается расположеніе къ нему. Стоитъ только вмѣсто расположенія и пониманія возбудить отвращеніе и непониманіе, и дѣло пропало, при томъ пропало болѣе, чѣмъ въ какомъ бы то ни было другомъ предметѣ, потому что въ математикѣ все послѣдующее вытекаетъ изъ предыдушаго, и если только зародышъ слабъ, то и весь организмъ будетъ хилымъ.
Перейдемъ теперь къ способамъ дѣленія и разберемъ ихъ по порядку.