5/6 отъ ⅞ отъ 9/10 =
, теперь эти дроби возможно сложить, и въ суммѣ будетъ
Такъ же и во второмъ примѣрѣ приведемъ сперва вычитаемое къ должному виду и тогда уже произведемъ дѣйствіе; 3½×2½×
= 7⅓, 10 - 7⅓ = 2⅔. Совершенно нельзя понять, къ чему требовалось математикамъ затруднять сложеніе и вычитаніе дробей особенными правилами, какъ обращаться съ долями долей, а между тѣмъ эти правила разсматривались на нѣсколькихъ страницахъ, занимавшихъ много параграфовъ, требовали большого количества упражненій и приносили только вредъ, такъ какъ на нихъ безъ пользы уходило много времени и труда. Теперь уже наши дѣти не изучаютъ отдѣльныхъ правилъ, какъ складывать или вычитать доли долей, и въ этомъ отношеніи имъ легко. Будемъ же надѣяться, что подобно этому отдѣлу исчезнетъ въ учебникахъ и другой лишній отдѣлъ — нахожденіе частей цѣлаго, и присоединится туда, гдѣ ему настоящее мѣсто, т. е. къ умноженю дробей.
Замѣтимъ, что вычисленія съ долями долей очень древняго происхожденія, они ведутъ свое начало отъ греческаго математика Герона (во II ст. до Р. X.). Были выработаны спеціальные пріемы, какъ обозначать часть дробнаго числа. Напр., у арабовъ примѣнялось такое обозначеше:
,которое должно показывать 4/5 отъ 3/7 отъ ⅝, т.-е. окончательно 3/14. У Леонардо Фибонначи (въ XIII ст. по Р. X.) формула
равна, согласна нашему порядку,
всего 2224/35, а формула
равна
Вотъ какая путаница вносилась этимъ отдѣломъ совершенно безъ всякой нужды. Также и въ русскихъ матем. сборникахъ XVII—XVIII в. этотъ отдѣлъ давалъ не мало сбивчивости. Онъ назывался «выниманіе дробовое» или «вычитаніе доли изъ долей». Его нельзя было смѣшивать съ другимъ дѣйствіемъ, которому придано созвучное заглавіе, т.-е. съ «вычитаніемъ въ доляхъ», гдѣ разсматривается наше вычитаніе дробныхъ чиселъ. Составителю учебника приходилось не мало разъяснять, что-бы предостеречь ученика отъ смѣшиванiя вычитанія и нахожденія части, такъ что предъ вычитаніемъ помѣщено было отдѣльное разъясненіе «о разумѣніи, что есть доли изъ долей».
Обратимся теперь къ чистому умноженію дробей, какъ отдѣльному дѣйствію. Обособляться оно стало только въ средніе вѣка, и тогда ему придано было названіе «умноженіе», древняя же математика ограничивалась только нахожденіемъ простѣйшихъ частей числа, тѣмъ болѣе, что даже и въ цѣлыхъ числахъ она стремилась привести умноженіе къ сложенію. У Бернелинуса, ученика римскаго папы Сильвестра II (въ XI в.), умноженіе 1/36 на ⅓ совершается по римскимъ образцамъ слѣдующимъ образомъ: 1/36 обращается въ доли фунта; въ фунтѣ 12 унцій, слѣд., унція равна 1/12, а такъ какъ въ унціи 24 скрупула, то дробь 1/36 обратилась въ 8 скрупуловъ; ⅓ равна ⅓ фунта, т.-е. 4 унціямъ; множимъ теперь ⅓ фунта на ⅓ унціи, т -е. на 8 скрупуловъ, и получается 1/9 унціи, иначе сказать 2⅔ скрупула, а такъ какъ 2 скрупула составляютъ особою мѣру, которая называется «emisescla», то окончательный отвѣтъ представится въ видѣ 1⅓ «emisescla». Да, можно сказать, что способъ Бернелинуса очень и очень нелегокъ.
У Фибонначи (XIII ст. по Р. X.) подъ вліяніемъ арабскихъ и индусскихъ образцовъ нѣтъ вычисленія съ унціями, и дѣло идетъ просто съ отвлеченными долями. Фибонначи пользуется такимъ способомъ. Сперва онъ перемножаетъ числителей, а потомъ получившееся число дѣлитъ на перваго знаменателя и, затѣмъ, уже это частное дѣлитъ на второго знаменателя.
Петръ Рамусъ, знаменитый французскій математикъ и философъ XVI столѣтія, даетъ въ главѣ о дробяхъ, какъ и въ другихъ отдѣлахъ математики, много свѣжихъ и новыхъ мыслей. Онъ особенно настаиваетъ на томъ, что ученикамъ надо объяснять правила, а не только принуждать выучивать ихъ наизусть, и что правила надо выводить, а не только примѣнять готовыя къ примѣрамъ. Однако, самъ Рамусъ, вслѣдствіе той туманности, которую придавали ариѳметикѣ его предшественники, не всегда одинаково ясно и удачно ведетъ свое изложеніе, такъ что въ случаѣ умноженія дробей мы находимі, у него такой запутанный выводъ: «дано умножить ¾ на ⅔, это значитъ найти ¾ части отъ дроби ⅔; разсуждаемъ по тройному правилу—1 относится къ 3, какъ 2 къ 6, и 1 относится къ 4, какъ 3 къ 12, слѣдовательно, отвѣтъ будетъ : 6/12 это и есть произведеніе ⅔ на ¾».
Русскіе математики XVII и XVIII в. слѣдовали въ главѣ объ умноженіи западно-европейскiмъ образцамъ. Они разсматривали 3 случая: a) умноженіе дроби на цѣлое, b) умноженіе дроби на дробь и c) умноженіе смѣшанныхъ чиселъ. Въ концѣ, въ такъ наз. «строкѣ генераль» давалось общее правило перемноженія дробей. Неизмѣняемость произведенія при перестановкѣ производителей объяснялась въ такихъ выраженіяхъ: