Выбрать главу

рѣшается такъ: 100—1—7—1000—5, перемножь два лѣвыхъ числа, а также перемножь 3 правыхъ числа и послѣднее произведеніе раздѣли на первое, будетъ въ отвѣтѣ 350, столько рублей прибыли дастъ 1000 р. въ теченіе 5 лѣтъ.

Простое и сложное тройное правило распредѣлялись обыкновенно въ XVI—XVIII вв. на массу мелкихъ отдѣловъ, которые носили очень замысловатыя названія, въ зависимости отъ содержанія задачъ. Вотъ эти названія по Магницкому: a «тройное торговое правило», т. е. вычисленіе стоимости купленнаго товара; b «тройное торговое о купляхъ и продажахъ»,—то же, что и предыдущее, но только посложнѣе; c «тройное торговое въ товарныхъ овощахъ и съ вывѣскою», когда приходится дѣлать вычетъ за посуду и вообще оболочку; d «о прибыли и убыткѣ»; e «статья вопросная въ тройномъ правилѣ», въ ней задачи очень разнообразнаго содержанія, по большей части съ обратной пропорціональностью; f «статья вопросная со временемъ», гдѣ спрашивается высчитать продолжительность работы, пути и т. п.

Въ началѣ ХІХ-го вѣка было предложено Базедовымъ еще измѣненіе въ тройномъ правилѣ и опять въ ту-же самую сторону машинальнаго, безсознательнаго навыка. Этотъ нѣмецкій педагогъ задался цѣлью еще болѣе упростить рѣшеніе задачъ на тройное правило тѣмъ, что еще сильнѣе уменьшить разсужденіе при ихъ рѣшеніи и замѣнить его письмомъ готовой формулы. Онъ совѣтуетъ располагать данныя числа 2 столбцами: въ лѣвомъ пишется неизвѣстное количество и всѣ тѣ числа, которыя должны войти въ числители формулы, а въ правомъ—всѣ множители, составляющіе знаменателя. Примѣръ: для продовольствія 1200 человѣкъ въ теченіе 4 мѣсяцевъ требуется 2400 центнеровъ муки; на сколько человѣкъ 4000 центнеровъ выйдетъ въ 3 мѣсяца? Пишемъ 2 столбца:

?      — 1200

2400 — 4000

3      —      4

и получаемъ формулу отвѣта

. Почему числа 1200, 4000 и 4 вошли въ числителя, а 2400 и 3—въ знаменателя? На это можно отвѣтить такимъ правиломъ: въ числителя входитъ число, однородное съ искомымъ, т. е. въ нашемъ случаѣ число 1200; кромѣ того въ него же входятъ всѣ тѣ числа второго условія {4000 · 4), которыя прямо пропорціональны искомому; если же они обратно пропорціональны, какъ въ нашемъ примѣрѣ 3, то они замѣняются соотвѣтствующнми числами 1-го условія (4-мя).

Вотъ все, что мы можемъ сообщить объ историческомъ развитіи тройного правила. Изъ всего сказаннаго можно сдѣлать заключенiе, которое годится для нашего времени. Средневѣковая ариѳметика, съ ея стремленіемъ давать только правила и пропускать выводы, съ ея механическимъ рѣшеніемъ вопросовъ, имѣла слишкомъ большое вліяніе на всю послѣдующую школьную жизнь, и настолько большое, что слѣды его проявляются на каждомъ шагу и въ наше время. Какъ бы мы ни старались отряхнутьоя отъ традиціи, освободиться отъ привычки, но онѣ слишкомъ тѣсно насъ охватили и слишкомъ крѣпко къ намъ привлеились, чтобы ихъ можно было отбросить безъ остатка. Наша школа все еще повинна въ механическомъ заучиваніи ариѳметики, безъ достаточнаго участія сознательности. Тройное правило служитъ хорошимъ доказательствомъ этого. Нерѣдко забываетъ наша средняя и низшая школа, что она призвана давать общее образованіе, а не готовить бухгалтеровъ, конторщиковъ, счетчиковъ и т. п. Между тѣмъ ремесленные пріемы итальянцевъ и нѣмцевъ, стремившихся не развить человѣка, а сдѣлать изъ него счетную машину, примѣняются нерѣдко и теперь. Къ чему всѣ эти правила: тройное, смѣшенія и т. д.? Какой цѣли они должны удовлетворять? Они должны являться выводомъ изъ рѣшенныхъ задачъ, а не предшествовать рѣшенію задачъ; вредно рѣшать задачи по предварительно усвоенному правилу, но надо стараться доходить до отвѣта свободнымъ личнымъ соображеніемъ. Однимъ словомъ, правило не надо понимать въ видѣ рецепта, который достаточно запомнить, чтобы по нему приготовлять разныя мудреныя рѣшенія; но имъ слѣдуетъ дорожить только какъ выводомъ, къ которому приходитъ ученикъ: если ученикъ не можетъ сдѣлать этого вывода, то это значитъ, что задачъ взято мало, или онѣ расположены не систематично, и эту ошибку надо поправить болѣе систематическимъ расположенiемъ задачъ; если ученикъ дѣлаетъ не такой полный и обстоятельный выводъ, какой хотѣлось бы учителю, то лучше удовольствоваться имъ, чѣмъ заставлять разучивать правило, навязанное учебникомъ: оно скоро забудется и не окажетъ развивающаго дѣйствія, такъ какъ необходимымъ качествомъ математическаго вывода должна быть самостоятельность, а необходимьмъ условіемъ сознательности должно быть тѣсное связываніе всѣхъ частей курса, почему и не можетъ имѣть мѣста механическое вкладываніе въ голову отдѣльныхъ кусковъ, усвояемыхъ памятью.