«положи», говоритъ, «шахъ, мнѣ на первую клѣтку доски 1 пшеничное зернышко, на 2-ю два, на 3-ю 4, на 4-ю 8 и т. д., на каждую послѣдующую вдвое больше, чѣмъ на предыдущую».
Клѣтокъ въ доскѣ 64. Шахъ поспѣшилъ согласиться, но когда стали высчитывать количество зеренъ, то оказалось, что получается нѣчто необъятное, и что столько зеренъ нечего и думать набрать, хотя бы начать собирать ихъ со всей земли. Отвѣтъ такой: 18 446 744 073 709 551 615.
Счетные приборы
Всякій отдѣльный человѣкъ и всякій отдѣльный народъ на первыхъ ступеняхъ своего развитія бываетъ склоненъ къ предметному счету. Какъ дѣтямъ, такъ и дикарямъ свойственно начинать счетъ съ пальцевъ. Отъ пальцевъ они переходятъ робкими попытками и съ большой нерѣшительностью къ счету на другихъ предметахъ, обыкновенно на близкихъ имъ и обиходиыхъ, напр., на черточкахъ, зарубкахъ, крестикахъ, костяшкахъ в т. п. Они еще очень далеки въ этомъ случаѣ отъ устнаго счета и отъ письменныхъ вычисленій. Продолжая развивать свою привычку къ наглядному счету, человѣкъ доходитъ до сложныхъ системъ, которыя онъ проявляетъ въ особенныхъ счетныхъ приборахъ и аппаратахъ. Одни только индусы, у которыхъ наука восходитъ къ такой же сѣдой древности и къ такимъ же необъятнымъ глубинамъ прошедшихъ вѣковъ, какъ у египтянъ и китайцевъ, и у которыхъ образованіе начало развиваться за тысячи лѣтъ до Р. X., — одни они успѣли освободиться отъ помощи предметовъ во время счета и занялись чисто умственнымъ, преимущественно устнымъ, счетомъ. У остальныхъ же народовъ, какъ образованныхъ, такъ и мало развитыхъ, мы встрѣчаемъ множество наглядныхъ пособій.
Укажемъ прежде всего на счетъ по пальцамъ и притомъ не на простой способъ постепеннаго загибанія пальцевъ, а на оригинальные пріемы, изобрѣтенные по большей части римлянами.
Римляне были большіе любители всевозможныхъ вычисленій на пальцахъ. Между прочимъ, путемъ разгибанія и загибанія пальцевъ, а также путемъ вытягиванія и складыванія рукъ, они умѣли выражать числа отъ 1 до милліона. При этомъ 3 пальца лѣвой руки, начиная съ мизинца, служили у нихъ въ различныхъ комбинаціяхъ для простыхъ единицъ, остальные пальцы лѣвой руки—для десятковъ, большой и указательный пальцы правой руки для сотенъ, а остальные для тысячъ. Чтобы выразить, напр., простую единицу, они загибали мизинецъ, чтобы выразить 2, пригибали 4-й и 5-й палецъ къ ладони, для 3-хъ—3-й палецъ: число 90, напр., обозначалось указательнымъ пальцемъ, пригнутымъ къ ладони; для обозначенія десятковъ тысячъ они клали лѣвую руку на грудь, бедро, для сотенъ тысячъ пользовались такимъ же образомъ правой рукой; складываніеі рукъ крестъ-накрестъ соотвѣтствовало милліону.
Римляне не только могли замѣчать на пальцахъ большія числа, но они умѣли производить при помощи пальцевъ нѣкоторыя дѣйствія. И сейчасъ еще потомки римлянъ, румыны и южные французы, въ состояніи быстро и искусно продѣлывать на пальцахъ таблицу умноженія.
Положимъ, дано умножить 6 на 8; тогда протягиваемъ на одной рукѣ 1 палецъ, т. е. ровно столько, насколько первый множитель больше пяти, а на второй рукѣ протягиваемъ 3 пальца, потому что, согласно такому же разсчету, 8 больше 5-ти на три; количество протянутыхъ пальцевъ складываемъ, и это будетъ число десятковъ—4; количества же пригнутыхъ пальцевъ перемножаемъ: 4×2=8, тогда получимъ единицы произведенія, 4 дес.+8=48.
Еще примѣръ: 8X9; такъ какъ 8 больше 5-ти на 3, а 9 на 4, то надо протянуть на первой рукѣ 3 пальца, а на второй—4, тогда останется согнутыхъ пальцевъ на первой рукѣ 2, на второй—1; теперь мы складываемъ количество протянутыхъ: 3+4=7, и перемножаемъ количества согнутыхъ: 1×2=2, отвѣтъ 72.
На чемъ же основанъ этотъ остроумный и быстрый пріемъ? Имъ такъ любили пользоваться школьники, особенно среднихъ вѣковъ. когда имъ не давалась многотрудная таблица умноженія. Основаніе его лучше всего можно выяснить алгебраической формулой, и для тѣхъ, кто владѣетъ алгеброй, мы ее сообщаемъ. Она имѣетъ видъ тождества: х. у==(х—5+у—5). 10+[5—(х—5)]. [5—(у—5)]. Изъ формулы можно видѣть, что она примѣнима только для тѣхъ случаевъ, когда множители больше 5-ти.
Пальцевымъ счетомъ можно воспользоваться также и при умноженіи двузначныхъ чиселъ, но только такихъ, чтобы они были не выше 20-ти. Чтобы показать это на примѣрѣ, умножимъ этимъ способомъ 13 на 14; для зтого 3 да 4 складываемъ; будетъ 7, столько десятковъ; эти же числа, т.-е. 3 и 4, перемножаемъ, будетъ 12, столько единицъ; а за то, что множители принадлежатъ ко 2-му десятку, надо къ полученнымъ отвѣтамъ добавить еще сотню; тогда всего получится: 100+70+12=182—отвѣтъ совершенно вѣрный. Кто знаетъ алгебру, тотъ безъ труда составитъ формулу для объясненія этого пріема: (10+a). (10+b)=100+ab+10. (a+b).