На самых ранних стадиях жизни Вселенной гравитация и все остальные силы боролись друг с другом за власть. Поэтому при описании Вселенной в равной мере нельзя пренебрегать ни квантовой механикой, ни общей теорией относительности. Но мы до сих пор не знаем, как согласовать эти две совершенно разных парадигмы, чтобы они объединились естественно и непринуждённо.
Если мы захотим описать самые ранние стадии жизни Вселенной, придётся вразнобой применять одновременно разные виды математического аппарата в попытках объединить все четыре фундаментальные силы (гравитацию, электромагнетизм, сильное и слабое взаимодействия) во что-то, что (как мы надеемся) будет работать.
Способов одновременно применять разные математические методы много, и мы не знаем, насколько хорошо тот или иной подход ближе к суровой реальности самых ранних дней нашей Вселенной. На этом пути мы рано или поздно достигаем некоторой точки, в которой, сколько бы мы ни вглядывались в более ранние моменты истории Вселенной, наша «математика Франкенштейна» просто перестаёт работать. Мы упираемся в стену, преграждающую движение наших физических теорий, и видим, что не можем продвинуться вперёд ни на шаг. Эта стена не позволяет нам разобрать механизм рождения Вселенной и ответить на важнейший вопрос: откуда же она взялась?
И всё же у нас ещё есть возможность поразмышлять над этим вопросом и попытаться представить, как мог бы выглядеть ответ на него.
Для этого нам придётся немного подумать о том, что такое ничто. Ничто, полное и абсолютное ничто! Проще некуда?
Что такое Ничто
«Ничто» – понятие, вокруг которого ломают копья и физики, и философы. Возьмём участок пространства, освобождённый от любых видов вещества и излучения. Это «ничто» в его простой разновидности. Но «ничто» может быть и другого вида – когда отброшены и сами пространство и время. Представить это гораздо труднее.
Поэтому для начала подумаем просто о пустом участке пространства и времени вокруг нас.
Представьте, что вы вышли в открытый космос в скафандре и смотрите на окружающую вас Вселенную. В какой-то момент вам может показаться, что пустота пространства тоже вглядывается в вас. Всматриваясь в ничто, мы рискуем ощутить ни с чем не сравнимое чувство экзистенциального ужаса, избавление от которого приходит из самого неожиданного источника: из квантовой физики. Ведь даже само пустое пространство бурлит непрестанно возникающими и вновь уходящими в небытие частицами, которые называются квантовыми флюктуациями[9].
Казалось бы, «непрестанно возникающие и вновь уходящие в небытие частицы» – просто очередная причудливая идея, выдуманная учёными, чтобы сбить всех с толку. Но на деле присутствия таких частиц требует глубинная структура квантовой механики. А мы, хотя и не способны наблюдать их непосредственно, можем измерять их влияние на мир вокруг нас.
Как видно из самого их названия, квантовые флюктуации – нечто мимолётное и переменчивое. Но они всегда были и всегда будут. Единственное, что остаётся постоянным в вечной Вселенной, – никогда не прекращающееся движение квантовой энергии.[10] Но семена нашего понимания квантовых флюктуаций были посеяны лишь около ста лет назад.
Первые мысли о квантовой механике – и квантовых флюктуациях – появились на скалистом, безлиственном острове Гельголанд в Северном море. В 1925 году там, спасаясь от сенной лихорадки, донимавшей его в его родной Германии, физик-теоретик Вернер Гейзенберг заложил математические основы квантовой теории. До тех пор физики прилагали огромные усилия, чтобы объяснить последние результаты своих экспериментов над микроскопическими частицами: сталкивали друг с другом атомы и посылали пучки субатомных частиц через электрические и магнитные поля с помощью математики Ньютона и Максвелла, но никак не могли поставить прочно установившийся свод теорий и научных законов – то, что мы теперь называем классической физикой – на службу описанию проводимых наблюдений и экспериментов.
9