Выбрать главу
Математические подробности оценки параметров уравнения регрессии методом наименьших квадратов

В самом общем виде формулу МНК можно представить следующим образом:

Для отыскания параметров а и b, при которых функция j(a, b) принимает минимальное значение, необходимо найти частные производные по каждому из параметров этой функции а и b и приравнять их к нулю. Если Σe2 обозначить через S, то в результате мы получим систему нормальных уравнений МНК для прямой:

Преобразовав систему уравнений (2.1.2), получим:

Решив систему уравнений (2.1.3) методом последовательного исключения переменных, найдем следующие оценки параметров:

С помощью оцененного таким образом уравнения регрессии можно предсказать, как в среднем изменится признак Y в результате роста факторов Х1, Х2,…..Xt, (или одного фактора X).

В зависимости от того, какая математическая функция используется для прогнозирования результирующей переменной У, различают линейную и нелинейную регрессию. При этом в основе линейной регрессии лежит уравнение линейного тренда, а в основе нелинейной регрессии — целое семейство уравнений нелинейных трендов (полиномиальный второй, третьей и прочих степеней, степенной, экспоненциальный и др.). В случае если результативный признак Y зависит от одного фактора Z, то такое уравнение регрессии называется парным, а если Y зависит от нескольких факторов Х1, Х2,…. Xt, — то уравнением множественной регрессии.

Практически в любом учебнике по общей теории статистики и по эконометрике можно более подробно познакомиться со спецификой уравнений регрессии[2]. Существуют формулы, по которым можно самостоятельно найти параметры как уравнения линейной регрессии, так и различных видов уравнений нелинейной регрессии. Однако с внедрением в широкую практику компьютеров и соответствующих компьютерных программ уже нет необходимости оценивать параметры уравнения регрессии вручную, тем более что это процесс довольно трудоемкий.

2.2. Решение уравнения регрессии в Excel с учетом фактора времени. Интерпретация и оценка значимости полученных параметров

Рассмотрим алгоритм решения уравнения регрессии с применением соответствующих вычислительных программ. При этом работу с уравнением регрессии в компьютерных программах можно разделить на три этапа.

На первом, подготовительном этапе необходимо определиться с набором факторов, которые необходимо включить в уравнение регрессии, а также с его аналитической формой, что в ряде случаев требует предварительной обработки данных. Например, в случае выбора степенного уравнения регрессии вместо исходных данных нужно взять их логарифмы.

Второй этап состоит из собственно решения уравнения регрессии и нахождения его параметров.

На третьем этапе проводится оценка и тестирование общего качества уравнения регрессии, проверка статистической значимости каждого из коэффициентов регрессии, определяются их доверительные интервалы, а также принимается окончательное решение об адекватности или неадекватности полученного уравнения регрессии.

Как известно, одним из наиболее распространенных способов определения тренда в динамике курса валюты является построение его зависимости от фактора времени Т. Так, если в качестве зависимой переменной Умы возьмем ежемесячный курс доллара, а в качестве независимой переменной Т — время (в данном случае порядковые номера месяцев начиная с июня 1992 г.), то у нас получится следующее уравнение парной линейной регрессии:

где а — свободный член уравнения регрессии;

b — линейный коэффициент регрессии, показывающий, как изменение величины независимой переменной (фактора) Т в среднем способствует изменению зависимой переменной (результативного признака) Y,

Трасч расчетное значение результативного признака, вычисляемое по формуле 2.2.

Минимизируем сумму квадратов отклонений (остатков) Yфакт от Ypасч, т. е. фактических значений курса доллара от его расчетных значений. В результате формулу МНК (2.1.1) для линейной регрессии можно представить в следующем виде:

Уравнение 2.3, в принципе, можно решить самостоятельно, если найти его параметры согласно формулам (2.1.4) и (2.1.5), но в целях ускорения этого процесса будем его решать с помощью Пакета анализа Excel. Кстати, желающие лучше усвоить суть МНК могут сначала самостоятельно в «ручном режиме» решить уравнение регрессии, а затем сверить свои результаты с теми, что мы получим в Excel.

Чтобы подготовить исходные данные к решению уравнения регрессии, разместим в Excel два столбца исходных данных. В первом столбце, который озаглавим Time, поместим порядковые номера месяцев, начиная с июня 1992 г. (с номером 1) и кончая апрелем 2010 г. (с номером 215). Во втором столбце, который озаглавим USDollar, поместим данные по курсу доллара на конец месяца, начиная с июня 1992 г. и заканчивая апрелем 2010 г.[3] Таким образом, столбец Time представляет собой независимую переменную, которая в формуле (2.2) обозначена символом Т, а столбец USDollar является зависимой переменной Yфакt. Далее переходим к решению уравнения регрессии в Пакете анализа Excel согласно алгоритму действий № 3.

Алгоритм действий № 3
Как решить уравнение регрессии в Excel
Шаг 1. Ввод в уравнение исходных данных

Сначала в Microsoft Excel 2007 в верхней панели инструментов выбирается опция ДАННЫЕ (в Microsoft Excel 1997–2003 нужно выбрать опцию СЕРВИС), потом в появившемся окне АНАЛИЗ ДАННЫХ — опция РЕГРЕССИЯ. После чего появляется новое окно РЕГРЕССИЯ (рис. 2.1), в котором в графе ВХОДНОЙ ИНТЕРВАЛ У выделяем (с помощью мышки) столбец данных USDollar (ячейки $С$1:$С$216). Здесь же в графе ВХОДНОЙ ИНТЕРВАЛ Xвыделяем столбец данных Time (ячейки $В$1:$В$216), т. е. независимую переменную Т из нашего уравнения регрессии (2.2).

Шаг 2. Дополнительные опции
вернуться

2

См., например: Эконометрика: учебник / под ред. И.И. Елисеевой. 2-е изд., испр. и доп. М.: Финансы и статистика, 2006. С. 43—132.

вернуться

3

Последние данные, имевшиеся у автора на тот момент, когда писались эти строки.