Выбрать главу

Но на кривую кислородной диссоциации оказывает влияние не только парциальное давление кислорода. Существенное влияние оказывает и рН крови, то есть тот самый эффект Вериго-Бора, речь о котором шла чуть выше.

??? - Рисунок - ???

Рис 2.2. Кривые кислородной диссоциации для крови голубя (по Лутцу и др., 1973.)

I — кривая, полученная при нормальных для организма птицы условиях при рН 7,5;

II — кривая, полученная при всех тех же условиях, но со сдвигом рН с 7,5 до 7,2.

На рис 2.2 изображены две кривые кислородной диссоциации, которые получены для одной и той же крови и при нормальных условиях по парциальному давлению, но при разных значениях рН крови. Первое, на что я хочу обратить внимание читателей при анализе рис. 2.2 — это на то обстоятельство, что при различных значениях рН полное насыщение крови кислородом происходит при значительно меньшем парциальном давлении кислорода, чем оно реально существует на уровне моря или просто на равнинной местности.

А это означает, что нас не должна особенно волновать проблема насыщения нашей крови кислородом, по сути мы всегда имеем полное насыщение крови кислородом, если только мы не живем высоко в горах. А вот другая проблема — отдача кислорода тканям — нас должна особенно беспокоить. Очень часто наша кровь возвращается в легкие, не истратив даже 50% запасенного в ней кислорода. И в таком случае нам может помочь эффект Вериго-Бора. Например, при парциальном давлении кислорода в крови равном 40 мм. рт.ст. с рН 7,2 (по рис. 2.2) кровь может отдать 60% связанного кислорода, а та же кровь с рН 7,5 только 30%. Ясно, что для организма более благоприятна кровь с рН 7,2, чем с рН 7,5.

Физиологическое значение эффекта Вериго-Бора было отмечено многими исследователями. А упоминавшийся уже в этой главе русский ученый П. М. Альбицкий выдвинул даже гипотезу (1911г.), согласно которой парциальное давление углекислого газа в крови является важнейшим регулятором интенсивности окислительных процессов в тканях. Отсюда легко вытекает вывод, что при снижении в крови парциального давления углекислого газа нам следует ожидать нарушения обменных функций в организме и последующих всевозможных болезней.

Как видим, автор метода ВЛГД через полвека повторил гипотезу Альбицкого, но в то же время и предложил способ удержания углекислого газа в организме, чего не сделал Альбицкий. Конечно, самое интенсивное вымывание углекислого газа из организма происходит при глубоком дыхании. Поэтому Бутейко и решил волевым методом воспрепятствовать такому дыханию.

Многое мы делаем волевыми усилиями: и бегаем мы благодаря волевому преодолению своей лени, и физзарядкой мы занимаемся тоже благодаря волевому воздействию на самого себя, и точно так же мы обливаемся холодной водой, и точно так же мы достигаем волевыми усилиями всего и вся, чего хотим, поэтому нет ничего удивительного и в волевом управлении своим дыханием. Другое дело — многое ли нам дает такое волевое воздействие на дыхание? Возможно, все же следует найти причину самого глубокого дыхания и воздействовать на нее? Объяснение Бутейко причины глубокого дыхания нас не устраивает, так как оно бездоказательно. Как, например, связать переедание мяса или молока с глубоким дыханием? Или как леность, продолжительный сон или привычка к алкоголю приводят к глубокому дыханию? А что у детей считать причиной того же глубокого дыхания?

Вопросы эти не праздные уже потому, что если знать истинную причину глубокого дыхания, то тогда можно воздействовать на нее и в результате дыхание нормализуется. А если причина такого дыхания нам неизвестна, то тогда мы не в состоянии будем ее устранить и вынуждены будем прибегнуть к воздействию на само дыхание, что нам и предлагает Бутейко. Глубокое дыхание по его мнению является причиной многих болезней. Но мы не можем определить причину самого глубокого дыхания, а поэтому волевыми усилиями гасим глубину дыхания. Так родился метод волевой ликвидации глубокого дыхания. Ничего предосудительного в нем нет — не так быстро нам удается найти причину того или иного явления.

И по-прежнему у нас нет ответа и на вопрос — в чем причина глубокого дыхания, и на вопрос — почему мы испытываем кислородное голодание при нормальном насыщении крови кислородом? Ответом на последний вопрос может служить эффект Вериго-Бора, согласно которому при снижении концентрации углекислого газа в крови возрастает сродство кислорода с гемоглобином, что затрудняет переход кислорода в ткани организма. Но такой ответ будет не совсем точным, так как сродство гемоглобина с кислородом зависит не просто от концентрации углекислого газа в крови, а от концентрации ионов водорода в ней. Поэтому следует считать, что только недостаточное подкисление крови может быть причиной гипоксии всего организма при полном насыщении гемоглобина кислородом.

И если причиной гипоксии всего организма может быть относительно высокая щелочность крови, то и причиной глубокого дыхания тоже может быть испытываемое организмом кислородное голодание. Но более подробно все детали этого явления мы рассмотрим немного позже.

АТФ - УНИВЕРСАЛЬНОЕ КЛЕТОЧНОЕ ГОРЮЧЕЕ

И снова мы возвращаемся к энергетике клетки. Вспомним, что клетка — это отдельный микромир, имеющий четкие границы, внутри которых существует непрерывная химическая активность и непрерывный поток энергии. В переносе энергии от энергодающих химических реакций к процессам, идущим с потреблением энергии (которые собственно и составляют работу клетки), принимает участие АТФ (аденозинтрифосфат), выполняющий очень важную роль носителя энергии в биологических системах.

Как же образуется универсальное клеточное горючее — знаменитый АТФ?

Ответ на этот вопрос можно найти в статье Л. И. Верховского, имеющей, на мой взгляд, символическое название — "Кажется, рождается биопротоника (Химия и жизнь, 1990г., №10). Я перескажу здесь очень кратко лишь ту часть этой статьи, где речь идет о протонах (или назовите их ионами водорода).

Известно, что наружная мембрана клеток поддерживает не только разность в концентрации отдельных веществ внутри и снаружи клеток, но также поддерживает и разность электрических потенциалов.

Предложенная лауреатом Нобелевской премии Питером Митчеллом теория образования АТФ утверждает, что при окислении жиров и углеводов ферментами дыхательной цепи через мембрану переносятся электрические заряды, а затем созданный мембраной электрохимический градиент протонов используется другим ферментом — АТФ-синтетазой, которая присоединяет к АДФ (аденозиндифосфат) неорганический фосфат:

АДФ + Фн <-> АТФ + Н2О

Эта реакция, но только со стрелкой, направленной справа налево, называется реакцией фосфорилирования, то есть реакцией переноса и присоединения еще одной фосфатной группы к аденозинди-фосфату. Аденозиндифосфат отличается от аденозинтрифосфата тем, что в нем находится две фосфатные группы, а в АТФ — три. На присоединение еще одной фосфатной группы к АДФ затрачивается энергия, которая и запасается в АТФ. Такое накопление энергии в АТФ достигается благодаря сопряжению реакции фосфорилирования с реакциями окисления. Получается, и это уже твердо установлено, что мембранный потенциал (а он возможен только при наличии достаточной концентрации ионов водорода в межклеточной жидкости, то есть при достаточном подкислении крови — прим. Н. Д.) — это связующее звено окисления и фосфорилирования.

И поэтому своеобразная гипоксия клеток может возникать и при резко выраженном разобщении процессов окисления и фосфорилирования в дыхательной цепи. Потребление клетками кислорода при этом может даже возрастать, однако значительное увеличение доли энергии, рассеиваемой в виде тепла, приводит к энергетическому обесцениванию клеточного дыхания. Возникает относительная недостаточность биологического окисления, при которой, несмотря на высокую интенсивность функционирования дыхательной цепи, образование АТФ не покрывает потребности в них клеток, и последние находятся по существу в состоянии гипоксии.