На рис. 2.88 представлен пример импульсного управляющего устройства, обеспечивающего подключение нагрузки к сети и ее отключение под управлением внешнего логического сигнала. С целью ослабления помех запуск производится в момент перехода напряжения сети через нулевое значение. Такой режим благоприятен и для нагрузки, например для лампочки, поскольку может значительно удлинить срок ее службы.
Одновибратор на двух логических вентилях обеспечивает на выходе калиброванный импульс, синхронизированный с напряжением сети. Этот импульс поступает на симистор через транзисторный ключ, если внешний управляющий сигнал имеет значение логической единицы.
При помощи схемы, показанной на рис. 2.89а, можно изменять среднее напряжение на нагрузке в диапазоне практически от нуля до максимального значения. Здесь, как и в предыдущем случае, используется одновибратор, синхронизированный с напряжением сети. Этот каскад служит источником пилообразного напряжения, период которого равен половине периода сетевого напряжения. Оно подается на вход операционного усилителя и сравнивается с регулируемым опорным напряжением, снимаемым с потенциометра.
В момент пересечения пилообразным напряжением опорного уровня на выходе операционного усилителя, который выполняет функцию компаратора, возникает положительный перепад. Он эквивалентен сигналу логической единицы, который в зависимости от уровня опорного сигнала располагается между началом и концом полупериода сетевого напряжения. По этому сигналу запускается второй одновибратор. На его выходе формируется калиброванный импульс, который проходит через транзисторный ключ и открывает симистор. Таким образом, напряжение сети подключается к нагрузке на часть полупериода, длительность которой регулируется потенциометром (рис. 2.89б).
В подобной схеме следует применять специальные меры безопасности, поскольку между сетью и схемой управления симистором существует гальваническая связь. Такой ситуации можно избежать, если использовать оптопару или оптосимистор. Кроме того, необходимо учитывать нагрев симистора и обеспечить для него требуемое охлаждение.
ТРЕХФАЗНАЯ СЕТЬ
Трехфазная сеть более интересна электрикам, чем любителям электроники. Лишь немногие электронные схемы (например, детекторы чередования фаз) специально предназначены для работы с трехфазной сетью. С другой стороны, имеются преобразователи, имитирующие трехфазную сеть на базе однофазной, и промышленные устройства, которые питаются от такого источника.
В отличие от промышленных помещений в жилых трехфазная сеть всегда имеет нулевой провод (нейтраль), который служит опорной точкой для присоединения всех потребителей, включая лампочки и розетки. Напряжение между любой фазой и нейтралью равно 220 В, а между любыми двумя фазами (линейное напряжение) — 380 или 400 В. Изменение фазных напряжений во времени показано на рис. 2.90.
При отсутствии нулевого провода можно использовать только нагрузки, рассчитанные на линейное напряжение. К таковым относятся многие двигатели и другие силовые устройства, применяемые на промышленных предприятиях.
Если какое-либо устройство рассчитано для работы с трехфазной сетью, ему обычно недостаточно фазного напряжения (220 В). Имеются понижающие разделительные трансформаторы, рассчитанные на выходное напряжения 220 В при входном напряжении 380 В. Однако стандартные трансформаторы, которые бы обеспечивали обратное преобразование, не производятся. При необходимости можно включить понижающий трансформатор в обратном направлении, если потребляемый нагрузкой ток не слишком велик. Но перед этим нужно проверить, рассчитано ли подключаемое устройство на работу с таким напряжением.
ПРИМЕНЕНИЕ ТИРИСТОРОВ
Любителям радиоэлектроники, как правило, хорошо известны симисторы, которые широко используются в схемах, работающих на переменном токе непосредственно от сети (регуляторы света или скорости вращения двигателей). Работать же с тиристорами обычно приходится меньше. Действительно, схемы, в которых коммутирующими элементами служат тиристоры, встречаются довольно редко (за исключением устройств управления мощными двигателями постоянного тока на электрифицированном транспорте). Тиристоры небольшой мощности применяются в цепях постоянного тока в качестве электронного ключа, управляемого внешним сигналом (для выпрямления тока они обычно не используются).