Рождение нейронауки
Hейронаука зародилась около 2500 лет назад – во времена Гиппократа. В то время многие (даже Аристотель) верили, что разум находится в сердце, но Гиппократ считал, что мысли, ощущения, эмоции и познание исходят от мозга.
Это был гигантский шаг, но чтобы глубже понимать мозг, потребовалось несколько веков его изучения и множество теорий. Была теория, согласно которой в мозге нет плотных тканей, но есть заполненные жидкостью полости, или желудочки. Вероятно, самый известный сторонник этой идеи – врач II века Гален. Он считал, что у человеческого мозга три желудочка, каждый из которых отвечает за одну из умственных способностей: воображение, разум и память. Согласно его теории, мозг управляет телом, перекачивая жидкость по нервам от желудочков к другим органам.
Авторитет Галена был столь велик, что представления о мозге долго находились в его тени, а жидкостные теории доминировали еще в XVII веке. Даже такие светила науки, как французский философ Рене Декарт, сравнивали мозг с гидравлическим механизмом. И все же в таком предположении был серьезный изъян: жидкость перемещается недостаточно быстро, поэтому теория не объясняет скорость наших реакций.
Ситуация изменилась, когда новое поколение анатомов стали изображать строение мозга с бóльшей точностью. Ведущим среди них был английский врач XVII века Томас Уиллис, который утверждал, что ключ к работе мозга – в его плотных тканях, а не в желудочках. Затем, 100 лет спустя, итальянские ученые Луиджи Гальвани и Алессандро Вольта показали, что внешний источник электричества активирует нервы и мышцы. Это был очень важный вывод, благодаря которому появилось предположение, почему человек так быстро реагирует на события. И только в XIX веке немецкий физиолог Эмиль Дюбуа-Реймон подтвердил, что нервы и мышцы сами генерируют электрические импульсы.
Так была подготовлена почва для современной эпохи нейробиологии, начавшейся с работы испанского анатома Сантьяго Рамона-и-Кахаля в начале ХХ века. Его исследования определили нейроны как структурную единицу мозга. Ученый обнаружил такое разнообразие форм нейронов, какого не наблюдается в клетках других органов. Но самое удивительное – оказалось, что у насекомых нейроны не проще, а иногда сложнее по строению, чем у человека. Следовал вывод, что наши способности зависят от того, как соединяются нейроны, а не от характеристик самих клеток. «Нейросетевой» подход Кахаля стал началом нового способа рассуждений об обработке мозгом информации, он господствует и сегодня.
Смонтирован, чтобы думать
В XIX веке, исследуя анатомию нейронов, Сантьяго Рамон-и-Кахаль предположил, что сигнал идет по нейронам в одном направлении. Тело клетки и его ответвления (дендриты) принимают информацию от других клеток. Обработанные данные поступают по длинному нервному волокну нейрона (аксону) к синапсу, где сообщение передается следующему нейрону (см. рис. 1.1).
Только в 1940–50-х годах было составлено детализированное описание процесса передачи электрических сигналов. Сегодня мы знаем, что информация передается в виде кратких импульсов – потенциалов действия – с небольшим напряжением (всего 0,1 вольта) и длительностью в несколько тысячных секунды. Такие импульсы быстро преодолевают огромные расстояния, развивая скорость до 120 м/с.
Путь нервного импульса завершается у синапса, где происходит выброс молекул нейромедиаторов, которые передают сигнал через разрыв между нейронами. Оказавшись на другой стороне, молекулы сразу запускают электрический сигнал на поверхности принимающего нейрона. И тогда нейрон либо посылает собственный сигнал, либо временно подавляет его, снижая вероятность реакции на другие входящие сигналы. Оба варианта важны для направления потока информации, из которой в конечном счете состоят наши мысли и чувства.