Выбрать главу

Искривление пространства-времени понять легче, если отбросить одно пространственное измерение. Тогда пространство-время можно представить в виде эластичной пленки, на которой лежат различные предметы, прогибая и деформируя ее. Пленка искривляется, и прогиб, вызванный одними тяжелыми предметами, влияет на движение других предметов, положенных на пленку. Изменение высоты этой пленки соответствует изменению гравитационного потенциала, наклон поверхности демонстрирует ускорение свободного падения, и его локальная кривизна связана с приливными силами. Эта очень наглядная аналогия была придумана Эйнштейном. В интернете есть довольно много видеоматериалов, демонстрирующих ее.

В заключение раздела заметим, что ОТО не только дает некоторые количественные поправки к ньютоновской физике, но и предсказывает совершенно новые эффекты и объекты, такие как гравитационные волны или черные дыры.

1.3. Сколько весит свет?

ОТО лежит в основе математического формализма в космологии. Тем не менее при рассмотрении космологических проблем следует учитывать свойства среды, заполняющей Вселенную. Наши представления о содержимом Вселенной существенно изменились со времени жизни Эйнштейна. Сто лет назад физики знали только о существовании обычной материи, из которой состоят звезды, планеты и другие привычные объекты вроде наших тел, и об электромагнитном излучении. Сегодня обычная материя называется барионной материей, и, как полагают, на нее приходится около 5 % содержимого Вселенной. На электромагнитное излучение приходится гораздо меньше 1 %.

Остальные 95 % состоят из двух или трех других видов материи. Темная материя и темная энергия, которые мы обсудим соответственно в главе 4 и главе 5, являются действительно новыми типами, хотя темную энергию можно назвать материей только весьма условно. Третьим типом материи является нейтрино[23]. Эти типы материи отличаются друг от друга своими уравнениями состояния, т. е. соотношением между плотностью массы ρ и давлением р. Плотность массы связана с плотностью энергии ε простым соотношением ε = ρc2, которое получается путем применения хорошо известного соотношения E = mc2 к единице объема. Хотя уравнение состояния может иметь любую форму, мы рассмотрим только его простейший вид р = wε = wρc2, где w – безразмерная константа.

Следует отметить, что плотность энергии включает энергию покоя, которая очень велика из-за коэффициента с2. Насколько велика? Переформулируем этот вопрос: если бы мы рассматривали обычный воздух, то какое давление он бы имел при значении w = 1? При стандартных условиях воздух имеет плотность 1,23 кг/м3. Умноженная на квадрат скорости света, она дает плотность энергии около 1017 Дж/м3, что соответствует давлению 1017 Па. Таким образом, мы должны были бы сжать воздух до 1012 атмосфер[24], чтобы сделать его уравнение состояния похожим на уравнение с параметром w = 1. Такое давление в пределах Солнечной системы встречается только в центре Солнца, но плотность вещества там также значительно выше, около 1,6×105 кг/м3. Таким образом, можно смело положить w = 0 для обычной барионной материи. Такой вид материи в космологии называется холодной или пылевидной материей.

С точки зрения ОТО уравнение состояния материи среди прочего определяет и то, как она участвует в гравитационном взаимодействии. В этом ОТО отличается от классической гравитации Ньютона, в которой давление не влияет на силу гравитационного взаимодействия. Определим теперь, как различные типы материи взаимодействуют гравитационно.

1.3.1. Барионная материя

Для барионной материи это было сделано в конце XVIII в. Генри Кавендишем. Результаты его эксперимента были опубликованы в 1798 г. в «Философских трудах Королевского общества» в Лондоне, ведущем научном журнале того времени, и считаются важной вехой в истории физики. Цель эксперимента состояла в том, чтобы определить среднюю плотность Земли, что непосредственно переводится в задачу оценки гравитационной постоянной. Кавендиш измерял силу гравитационного взаимодействия между двумя парами свинцовых шаров, при этом изменялись как массы шаров, так и расстояния между ними. Его экспериментальная установка использовала новое хитроумное изобретение того времени – крутильные весы. Та же идея была использована несколько лет спустя Шарлем Огюстеном де Кулоном для измерения силы электростатического взаимодействия. Однако Кавендиш решал гораздо более сложную задачу в связи с существенно более слабой силой гравитационного взаимодействия. Ему удалось измерить силы на уровне 10-7 Н, что для того времени было беспримерным достижением. Оценка гравитационной постоянной, полученная Кавендишем, отличается от современной лишь на 1 %, а точность измерения была улучшена лишь столетие спустя. Он также подтвердил экспериментально закон всемирного тяготения Ньютона.

вернуться

23

Нейтрино — очень легкая элементарная частица, которая участвует только в гравитационных и слабых взаимодействиях. Известно три вида нейтрино: электронное нейтрино (νe), мю-нейтрино (νμ) и тау-нейтрино (ντ), каждое из которых имеет соответствующее антинейтрино.

вернуться

24

Это значение сильно недооценено, так как сжатый воздух имеет более высокую плотность, поэтому уравнение состояния w = 1 будет выполняться при давлении воздуха, в 1012 раз превышающим плотность. Этого невозможно достичь для воздуха в газообразном состоянии.