Выбрать главу

2.2. Расширение Вселенной и красное смещение

2.2.1. Другие галактики и их разбегание

Поначалу космология не вызывала большого интереса в научном сообществе, так как ее выводы было невозможно проверить. Однако ситуация изменилась после того, как в 1923 г. Эдвин Хаббл установил, что туманность Андромеды находится за пределами нашей Галактики, и вскоре после этого она была классифицирована как отдельная галактика. Таким образом, наша Галактика оказалась лишь одной из многочисленных галактик[26]. К 1929 г. было открыто уже большое количество галактик, и для некоторых из них удалось измерить лучевые скорости[27] и расстояния до них. Результаты очень удивили астрономов, поскольку из них следовало, что большинство галактик удаляются от нас с очень большой скоростью. На основании данных о 24 галактиках Хаббл в 1929 г. получил свой знаменитый закон[28], согласно которому скорость разбегания галактик v пропорциональна расстоянию r до них.

Математически он выражается формулой:

v = Hr. (2.1)

Коэффициент пропорциональности H получил название постоянной Хаббла.

Как следует из ОТО, величина H меняется со временем, но очень медленно – масштаб времени его изменения сравним с возрастом Вселенной, который сейчас оценивается в 13,8 млрд лет. Это часто приводит к путанице, поскольку значение переменной H исторически называется постоянной Хаббла. Значение этой величины, в настоящее время H0, называется параметром Хаббла. Эта величина обычно измеряется в километрах в секунду на мегапарсек[29] (обозначение (км/с)/Мпк).

Параметр Хаббла является одним из наиболее важных космологических параметров. Он необходим при определении расстояний до удаленных объектов (подробнее об этом далее в разделе 2.9), он напрямую связан с возрастом Вселенной и используется для вычисления многих других космологических параметров, таких как плотность вещества. Таким образом, улучшение точности его измерения улучшает также точность определения космологических параметров и, следовательно, ведет к лучшему пониманию свойств Вселенной.

Приведем последние оценки параметра Хаббла, основанные на данных: космического аппарата «Планк» (2013 г.): H0 = (67,80 ± 0,77) (км/с)/Мпк, Слоуновского цифрового обзора неба (2016 г.): H0 = (67,6 ± 0,7) (км/с)/Мпк и космического телескопа «Хаббл» (2016 г.): H0 = (73,00 ± 1,75) (км/с)/Мпк. Эти три оценки различны, они обеспечиваются различными методами и поэтому полностью независимы друг от друга. Некоторые из них могут быть неточными из-за неучтенных систематических ошибок.

2.2.2. Расширение

Разбегание галактик и закон Хаббла означают, что Вселенная расширяется. Как это понимать? Как можно представить себе расширение Вселенной в однородном мире без фиксированного центра? Рассмотрим в качестве примера модель двумерной Вселенной, сделанную из эластичной пленки, с галактиками, прикрепленными к ней. Эта пленка растягивается, увеличивая расстояние между галактиками. Это и будет расширением Вселенной. Обратите внимание, что сами галактики не расширяются вместе с пленкой, потому что на галактическом масштабе доминирует взаимное гравитационное притяжение. Другими словами, нехаббловские движения, т. е. местные мелкомасштабные движения, сильнее глобального хаббловского расширения на космологических масштабах. В результате ближайшие галактики не удаляются друг от друга, но движутся в общей потенциальной яме.

В нашей гравитационной яме находятся галактики Местной группы, которые включают в себя Млечный Путь, галактику Андромеды, галактику Треугольник, оба Магелланова Облака, а также около сотни карликовых галактик. Эти отклонения от общего расширения являются результатом отклонений от однородности Вселенной: средняя плотность материи внутри Местной группы больше, чем в соседних областях Вселенной. Естественно, что нехаббловские движения и отклонения плотности не могут быть описаны в рамках однородной космологии и требуют специального рассмотрения. Но в более крупных масштабах Вселенная довольно однородна и мы можем использовать закон Хаббла и другие выводы, полученные в рамках однородной изотропной космологической модели.

вернуться

26

Напомним, что слово «галактика» пишется с большой буквы, только когда речь идет о нашей Галактике, которую также называют Млечный Путь, и с маленькой во всех остальных случаях.

вернуться

27

Лучевая или радиальная скорость объекта является проекцией вектора его скорости на луч зрения — линию, соединяющую этот объект и наблюдателя.

вернуться

28

В 2011 г. в средствах массовой информации широко освещалось предположение о том, что закон Хаббла был впервые получен Леметром в 1927 г. и опубликован на французском языке в малоизвестном журнале. При этом Леметр определил постоянную Хаббла. Английский перевод был опубликован в 1931 г. в известном журнале Monthly Notices of Royal Astronomical Society. Но при этом в переводе отсутствовали две страницы, содержащие этот результат. Некоторые историки науки дошли до того, что обвинили Хаббла в плагиате. Их коллеги выступили с противоположными утверждениями. Поскольку в средствах массовой информации была отражена только первая точка зрения, мы считаем справедливым привести обе точки зрения, чтобы читатель мог самостоятельно сделать выводы. Исторически первой появилась работа Вея и Нуссбаумера (http://arxiv.org/abs/1104.3031) о первенстве Леметра. Затем появился препринт Блока (http://arxiv.org/abs/1106.3928) с обвинениями Хаббла в плагиате в этом и других случаях. Именно на основе этого препринта и появились сообщения в средствах массовой информации. Но они были оспорены другими историками науки (http://arxiv.org/abs/1107.0442). Оригинальная статья Хаббла доступна на http://www.pnas.org/content/15/3/168.full.pdf+html.

вернуться

29

Парсек (параллакс-секунда) — широко используемая в астрономии единица измерения расстояния, равная расстоянию, с которого орбита Земли вокруг Солнца видна под углом 1 секунда дуги. Парсек выражается через астрономическую единицу (среднее расстояние между Землей и Солнцем, обозначается а.е.) и связан с другими единицами расстояния следующими соотношениями: 1 пк ≈ 206,26× 103 а.е. ≈ 3,26156 св. лет = 30,857×1015 м.