Если пример с двумерной пленкой недостаточно наглядный для вас, можно привести и трехмерные аналоги. Обычно говорят про пудинг или пирог, который увеличивает свои размеры по мере выпекания. Внутри него есть отдельные кусочки начинки, например изюминки или орехи, которые в процессе выпекания удаляются друг от друга, но сохраняют свои размеры. Они играют роль групп и скоплений галактик, а также отдельных изолированных галактик.
Расширение означает увеличение пространственного масштаба Вселенной со временем. Мы пишем «пространственный масштаб», а не «размер Вселенной», поскольку последний термин плохо определен, если Вселенная бесконечна. Для количественной оценки пространственного масштаба вводят так называемый масштабный фактор, который обозначается a. Мы более строго определим его в разделе 2.6.
В действительно однородной Вселенной нет нехаббловских движений, и все расстояния между любыми двумя конкретными точками, привязанными к материи, заполняющей Вселенную, пропорциональны друг другу и растут с той же относительной скоростью. Иными словами, при рассмотрении расстояния между двумя удаленными объектами изменение масштабного фактора описывает, как это расстояние меняется с течением времени.
Постоянная Хаббла может быть выражена через скорость изменения масштабного фактора как относительная скорость этого изменения: H =(da/dt)/a, т. е. абсолютная скорость его изменения, деленная на его величину, измеренную в ту же эпоху. Таким образом, важно не столько значение масштабного фактора a, сколько отношение его величин в различные эпохи, которое мы будем называть относительным масштабным фактором и обозначать u. Из практических соображений в качестве знаменателя этого отношения используется масштабный фактор в современную эпоху: u= a/a0, где a0 – текущее значение масштабного фактора.
Так что все, что нам нужно, чтобы вычислить постоянную Хаббла в зависимости от времени, – это отношение расстояния между любыми достаточно удаленными объектами (которые гравитационно не связаны друг с другом) в разные эпохи к его значению в современную эпоху. Таким образом, эта постоянная может быть вычислена даже без точного определения масштабного фактора. Мы вернемся к дальнейшему обсуждению этого понятия в разделе 2.6.
2.2.3. Красное смещение
Расширение Вселенной проявляется в так называемом красном смещении спектра излучения. Спектр излучения каждого далекого астрономического объекта, например галактики или квазара, смещается. Этот сдвиг, как правило, происходит в сторону увеличения длин волн, поэтому и называется красным смещением. Его величина характеризует радиальную скорость удаления объекта.
Этот сдвиг можно объяснить двумя способами, описывающими тот же самый эффект. Обратите внимание, что при количественных расчетах следует использовать только один из них, чтобы избежать учета этого эффекта дважды.
Первый подход связывает красное смещение с расширением самого пространства (и вместе с ним и волн света) за время распространения этого света. В результате общего расширения Вселенной наблюдаемая длина волны λнабл длиннее, чем длина испущенной волны λисп, поскольку она расширилась вместе со всеми остальными расстояниями. Их отношение равно относительному масштабному фактору в ту эпоху, когда был излучен свет.
Количественная характеристика красного смещения определяется значением величины z, которая также называется красным смещением, или z-фактором, равной z = 1/u – 1. Она равна нулю для очень близких объектов и стремится к бесконечности для очень далеких объектов. Красное смещение обычно используется для определения расстояния до наиболее удаленных объектов. При очень больших расстояниях до объекта астрономы предпочитают указывать его красное смещение вместо скорости удаления.
Второй подход рассматривает красное смещение как результат эффекта Доплера, вызванного тем, что излучающий объект отдаляется от нас со скоростью его «разбегания». Для скоростей, существенно меньших скорости света с, т. е. при малых красных смещениях z << 1, его значение может быть приближенно записано как v = cz.
Скорость удаления объектов переводится в расстояния до них, используя закон Хаббла. Из-за неопределенности в значении параметра Хаббла расстояние часто выражается через безразмерную величину h = H0/(100 (км/с)/Мпк). Таким образом, скорость расширения 10 000 км/с переводится в расстояние 100 h–1 Мпк, иногда сокращается до 100 Мпк/h. Причина в том, что точность измерения z-фактора значительно выше, чем у параметра Хаббла, а расстояния, написанные таким образом, не теряют свою актуальность даже после изменения значения параметра Хаббла.