Выбрать главу

Вот картинка из экспериментальной работы (подробнее о работе см.: Диффузия примесных атомов на поверхности монокристалла). На самом деле, конечно, там было много картинок получено, а это просто типичная картинка. Вот здесь показан небольшой участок поверхности меди, на которой сидят примесные атомы индия. Температура была 320 кельвинов, то есть вполне комнатная температура. Естественно, никаких вакансий не видно, потому что этот метод очень медленный. Зато видно сидящие примесные атомы. Вот последовательность из четырех кадров. Между первыми двумя прошло 160 секунд, то есть за 160 секунд они никуда не сдвинулись. Между вторым и третьим прошло 20 секунд, и за 20 секунд мало того что они оба перепрыгнули куда-то, так еще в кадр попали какие-то другие атомы. Это вполне согласуется с тем механизмом перемещения за счет вакансий, про который я говорил. Когда экспериментаторы обработали все данные, они смогли восстановить динамические свойства вот этих вакансий. То есть оказалось, что действительно у них очень маленькая концентрация, кроме всего прочего. И оказалось, что типичное время перескока — порядка 10 наносекунд. То есть это интересная иллюстрация того, что очень медленный инструмент позволяет иногда изучить динамику намного более быстрых явлений, если правильно, хитро поставить эксперимент.

Пикосекунды

Теперь переходим от наносекунд еще глубже, к пикосекундам. Пикосекунды — это еще более краткий миг. И за пикосекунды никакие тела — и вообще даже свет — не успевают сдвинуться на какие-либо макроскопические расстояния. Здесь мы уже переходим в чисто микроскопическую — ну, или, может быть, мезоскопическую — физику.

Какие типичные процессы происходят на временах порядка пикосекунд? Это, прежде всего, разнообразные атомные, молекулярные явления. То есть явления, связанные с движением отдельных атомов или их групп. Например, синхронные колебания кристаллической решетки, то есть фононы. То есть если у вас есть, например, звук, то... — вы, наверное, знаете, что звук можно представить себе как поток таких квазичастиц, которые идут сквозь кристалл, то есть колебания решетки, которые называются фононами. Типичные времена колебания в этих фононах составляют как раз единицы, десятки, сотни пикосекунд.

Дальше. Например, поведение биологических молекул. Скажем, при свертке белков у вас происходит целый каскад разнообразных процессов. Когда у вас белок только транскрибировался... транслировался... вот... и потом начинает сворачиваться, то в процессе этой свертки у вас есть явления, которые происходят на пикосекундном масштабе, на наносекундном масштабе, вплоть до секунд. Но самые быстрые шаги переконформации этого белка происходят на пикосекундном масштабе. Это очень важно для биологии — знать, как всё это происходит.

Здесь же протекает такая вещь, как кинетика фазовых переходов. Слово «кинетика» означает, что мы не смотрим просто на результат чего-либо, а мы хотим в деталях знать, желательно поатомно, как происходит тот или иной процесс. То есть вот мы говорим: «Лед плавится». Скажем, посветили короткой вспышкой лазерного света на лед, и он расплавился. Но мы хотим знать, как начинается этот процесс — поатомно или через какие-нибудь колебания, однородно, неоднородно? Вот это всё изучается на пикосекундном масштабе.

Сюда же попадают и некоторые электронные явления. Я думаю, вы понимаете, что вообще между движением атомов и движением электронов есть довольно большой зазор по времени, потому что электроны на несколько порядков легче атомов, ядер. Поэтому при тех же самых силах электроны имеют отклик намного более быстрый, чем атомы или молекулы. Поэтому в пикосекундный масштаб попадают атомы и молекулы и некоторые достаточно медленные электронные движения. Ну например, кинетика носителей зарядов полупроводника. То есть, когда у вас в полупроводник подали напряжение, пошел какой-то ток, этот ток означает, что там светом посветили, начались какие-то процессы — скажем, родились дырки, которые куда-то потекли, начали рекомбинировать и так далее. Это всё протекает на масштабах порядка пикосекунд. В химических реакциях тоже. Говорится: «Химическая реакция произошла». На самом деле, она же не одномоментно происходит, это тоже целый каскад явлений, которые запускаются и следуют друг за другом. Это всё сопровождается разрывом, перетеканием электронных облаков, разрывом или созданием новых химических связей. Это всё тоже относится примерно к пикосекундному диапазону.

Про этот пикосекундный диапазон я хочу сказать две вещи. Первое — можно с полной уверенностью говорить, что это настоящая современная физика, то есть это то, что сейчас изучается в тысячах лабораторий мира, публикуется в сотнях журналов каждый день, это действительно самая настоящая современная физика. Вторая вещь, которую хочу рассказать про пикосекундный диапазон, — это то, как изучать такие явления. И здесь, оказывается, есть интересная вещь, которую я условно назвал «наносекундный барьер». Это означает вот что: разнообразные старинные методы исследования, которые, скажем, применялись еще в середине ХХ века или раньше, так или иначе требовали перемещения чего-либо в пространстве. Скажем, если у вас есть желание снять на быструю фотокамеру, то вам нужно сдвинуть заслонку, или если вы хотите получить короткую вспышку света при пробое в конденсаторе, то у вас есть движение электронного потока от одной обкладки к другой обкладке. Так или иначе, у вас есть какое-то механическое перемещение на хотя бы миллиметровые расстояния. А как я уже до этого сказал, всё это заканчивается на наносекундах. То есть наносекунды — это когда еще хоть какое-то движение заметно. На пикосекундном масштабе никакое движение микроскопических тел не заметно. Поэтому все эти старинные методы исследования просто не могут изучить диапазоны меньше одной наносекунды — на самом деле, даже меньше десятка наносекунд.

И вот здесь настоящим прорывом было изобретение лазеров. Ну а точнее (я покажу на следующем слайде) — способа с помощью лазеров получать очень короткие световые импульсы. Там буквально за несколько лет была целая революция, с помощью которой прошли весь пикосекундный диапазон — от наносекунд до единиц пикосекунд и даже глубже. И вот оказалось, что лазер — это совершенно уникальный метод исследования. Потому что для быстропротекающих процессов он служит одновременно как инициатором процесса, так и регистрирующим инструментом.