Стандартная методика, которую сейчас часто используют в большинстве, наверное, экспериментов по изучению быстропротекающих процессов (по-английски она называется "pump-probe technique", по-русски это часто переводят как «накачка и зондирование»), выглядит так: у вас есть, скажем, импульс света, который вы расщепляете на два коротких импульса света, сдвигаете их относительно друг друга на считанные пикосекунды (это всё легко делается) и потом посылаете на исследуемый образец. И вот первый импульс у вас запускает какой-то процесс, а второй импульс у вас попадает на этот объект в тот момент, когда этот процесс происходит. В результате, если вы можете контролировать сдвижку по времени между этими импульсами, вы можете четко проследить, что происходило с процессом спустя, скажем, одну пикосекунду, или спустя две пикосекунды, или спустя три пикосекунды, то есть получить такую развертку по времени вашего процесса.
Пару слов стоит сказать о получении этих лазерных импульсов. Они получаются вовсе не механическим способом, они получаются за счет взаимодействия между разными модами лазерного излучения внутри лазера. Выглядит это примерно так, если совсем вкратце. Ну, вы знаете, что такое лазер: там есть усиливающая среда, которая накачивается и формирует когерентно лазерное излучение. Так вот обычно в лазере усиливается не одна конкретная длина волны, а несколько близких или даже много близких длин волн. У них слегка отличающиеся частоты. И если не предпринимать никаких усилий, то эти частоты (то есть это разный тип света) просто накладываются друг на друга некогерентно. То есть, когда у вас выходит лазерный луч, на самом деле там есть много отдельных лазерных лучей со слегка отличающимися частотами. Однако если сделать специальное приспособление, специальное ухищрение, то можно добиться, чтобы эти разные частоты синхронизовались друг с другом. И тогда в какой-то момент времени они все, всей толпой начинают, скажем, с положительной фазы осциллирования. И тогда получается, что в этот момент времени у вас происходит резкий всплеск. А в дальнейшем у вас почти ноль интенсивности, потому что эти фазы друг друга компенсируют буквально. И в результате у вас получается некий экстремальный тип биений — биения, вы знаете, получаются при наложении двух или нескольких близких частот; но если частот много, у вас получается прямо череда, чередование очень узких импульсов со строго определенной периодичностью. Эти узкие импульсы можно действительно делать в пикосекундном масштабе без каких-либо проблем. Буквально за год, за два люди моментально в 60-е годы получили эти технологии. Еще в 80-е годы была дополнительная техника, которая позволяла эти пикосекундные импульсы сжимать еще дальше и получать даже фемтосекундный диапазон. Это всё делается, это всё стало рутиной эксперимента.
Ну и в качестве иллюстрации того, как работает этот метод накачки и зондирования, я расскажу про еще одну работу, которая тоже была выполнена не так давно, в которой люди впервые увидели фононы (подробнее об этой работе см.: Атомное кино). Это, конечно, когерентные фононы, не однократные, не одиночные, но всё равно фононы, то есть колебания кристаллической решетки, прямо воочию, в реальном времени.
Сначала пару слов про типичные времена. Если вы возьмете типичную скорость движения атомов, поделите на типичные межатомные расстояния в кристалле, вы получите времена порядка долей пикосекунд. Реально в кристаллах у нас атомы движутся не по одиночке, а синхронно. Скажем, фонон — это синхронные колебания сразу большой группы атомов. Если вы возьмете типичное число этих атомов в длине волны — n, — скажем, десятки, сотни, тысячи, то у вас как раз получится период колебаний этих фононов в пикосекундном диапазоне.
Как с помощью этой методики накачки и зондирования можно увидеть такие фононы? Делается это таким образом: посылаются на исследуемый образец два импульса, которые четко скоррелированы по времени. Это импульсы из разных диапазонов электромагнитного излучения. Сначала посылается очень короткий и мощный инфракрасный импульс, который буквально наносит точечный удар по поверхности кристалла, и он генерирует в данном месте и в данное время поток фононов, которые уходят вглубь кристалла, то есть колебания решетки около поверхности. И в тот же момент или с определенной конкретной сдвижкой по времени присылается туда слабый диагностический рентгеновский импульс. Рентгеновский импульс подбирается с такой длиной волны, чтобы он эффективно отражался от поверхности. Дело в том, что (вы представляете, да?) кристалл имеет межатомное расстояние порядка нескольких ангстрем. И поэтому, если подобрать рентгеновский импульс с длиной волны тоже порядка нескольких ангстрем, у вас эффективно начинается дифракция. То есть кристалл выступает в виде дифракционной решетки для рентгеновского света. Этот рентгеновский лучик можно отразить и дальше с помощью него можно смотреть на колебания кристаллической решетки, потому что эти колебания действительно отражаются в поведении рентгеновского импульса.
Вот просто типичная картинка. Если взять длину волны порядка нескольких ангстрем, получится дифракция света на кристаллической решетке. Самый простейший случай — это просто отражение получается от кристаллических плоскостей. За этим отраженным пучком рентгеновского света можно наблюдать, можно измерять его интенсивность, в том числе при разных углах, и смотреть на колебания. Это, кстати, только один из примеров довольно широкого класса акустооптических явлений — явлений, в которых оптика связана с акустикой, то есть со звуковыми движениями или с колебаниями атомов.
И вот тоже результат из экспериментальной работы. Смотрите: здесь на картинке (это пикосекунды по времени... это просто интенсивность) показан профиль рентгеновского импульса. Штриховой линией показан профиль, когда у нас не было удара по кристаллу, просто прилетел импульс, отразился и задетектировался. А сплошной линией показано то, что происходит, когда у нас нанесен удар по кристаллу в момент времени ноль. Вот видно, что здесь есть колебания интенсивности. И особенно красивым это всё становится, когда мы отнормируем ее на невозмущенный случай, то есть поделим сплошную кривую на штрихованную кривую. И тогда у нас получается такая отнормированная интенсивность, сначала она была единичка, то есть стандартный случай, потом вдруг она упала и начала колебаться.
Видите, по этим данным на самом деле можно много что рассказать про поведение кристалла. Во-первых, можно определить период колебания. В данном конкретном случае он оказался порядка 15 пикосекунд. Это, кстати, вполне согласуется с расчетами, если взять, например, скорость звука в кристалле и промерить расстояние, всё это пересчитать на времена. Кроме того, видно, что эти колебания затухают. Это естественно, потому что у нас начинаются убегания этих волн в толщу. Поэтому тот поверхностный слой, который мы видим реально в рентгеновском импульсе... в нём колебания постепенно затухают. Времена затухания оказались порядка 100 пикосекунд, что тоже, в принципе, согласовывалось с теоретическими расчетами.