Выбрать главу

Было испытано большое число комбинаций сортов хозяина и паразита, и всюду, где глюканы были выделены из совместимой к данному сорту расы гриба, они проявляли свойства супрессора, а если они были выделены из несовместимой расы, то таким действием не обладали. Иными словами, глюканы оказались специфическими, их действие в точности отражало взаимоотношения сорта и расы паразита.

Такие глюканы обнаружены внутри гиф паразита и в составе его выделений. Дело в том, что грибы рода Phytophthora имеют своеобразное строение клеточных стенок, которые на 75 % состоят из высокомолекулярных β-1,3—β-1,6-глюканов. Низкомолекулярные глюканы-супрессоры, по-видимому, служат строительным материалом для образования клеточных стенок, которые вместе с соответствующими ферментами в виде пузырьков везикул подходят к кончику гифы паразита, где и происходит построение клеточной стенки. Стейка гифы строится на ее растущем конце. Здесь глюканы изливаются из везикул и могут выделяться наружу и попадать в инфицированное растение, где и выполняют роль супрессоров.

Предполагается, что при взаимодействии паразита с цитоплазматической мембраной растения высокомолекулярные глюканы клеточных стенок (элиситеры) распознаются рецепторными белками на цитоплазматической мембране, индуцируя тем самым реакцию СВЧ. При совместимой комбинации хозяина и паразита взаимодействию элиситеров с рецепторами препятствуют низкомолекулярные глюканы — супрессоры, которые выделяются на конце растущей гифы.

На основании этих работ была предложена схема взаимодействия метаболитов хозяина и паразита, объясняющая на молекулярном уровне гипотезу ген — на — ген. Иными словами, кто кого преодолеет: элиситер супрессора или супрессор элиситера. Если рецепторный участок у растения захватит индуктор, включится устойчивость, если же, наоборот, супрессор — восприимчивость. Вспомните, в первой части книги мы предлагали гипотетическую схему возникновения генов устойчивости растения и вирулентности паразита в самых общих чертах и обещали интерпретировать ее на молекулярном уровне (рис. 13).

Гипотеза основывается на предположении, что у молекулы супрессора имеется два активных центра: неспецифическая группировка, которая конкурирует с элиситером за рецепторный участок у хозяина, и специфическая группировка, контролирующая распознавание молекул супрессора продуктами генов устойчивости растения (продуктами R-генов). Первая группировка молекулы супрессора, конкурирующая с индуктором, постоянна, вторая — изменчива, вариабельна.

Основным положением гипотезы является следующее: растение не поражается паразитом до тех пор, пока распознает на его поверхности элиситеры, которые служат сигналом для включения системы защиты. Для того чтобы преодолеть барьер неспецифического (видового) иммунитета, паразит приобретает супрессор, который, конкурируя с элиситером за рецептор растения и имея большее к нему сродство, занимает соответствующий рецепторный участок хозяина и тем препятствует включению защитных реакций с его стороны.

Рис. 13. Предполагаемая схема молекулярного взаимодействия элиситоров в супрессоров в системе ген — на — ген

В ходе сопряженной эволюции с паразитом у растения появляются гены сортовой устойчивости (или R-гены). Предполагается, что их продуктом является некое вещество, или рецептор, у растения, которое связывает супрессор по его вариабельной группировке и тем самым как бы «уводит» его с поверхности взаимодействия паразита и хозяина, оставляя элиситер вне конкуренции. Не имеющий более конкурентов элиситер вновь вступает во взаимодействие с рецептором, индуцируя у пего защитные реакции. Такое растение приобретает сортовую устойчивость к патогену, основанную на наличии у него R-гена.

В результате мутации вариабельная часть супрессора (та самая часть, которая связывалась продуктом R-гена) изменяется так, что теряет комплементарность к продукту R-гена и перестает им связываться. Супрессор вновь оказывается на свободе и начинает вытеснять элиситер в борьбе за рецептор. Так возникает ген вирулентности паразита, способный преодолевать ген устойчивости.

Далее процесс повторяется. Отдельные особи среди популяции растения приобретают способность узнавать и связывать вновь возникшую изменившуюся часть молекулы супрессора. Возникает ген устойчивости R2, а паразит, изменяя свою вариабельную часть (ген вирулентности), преодолевает и эту уловку растения.

Вот вам тот же самый эволюционный марафон, с которого мы начинали книгу, но уже на молекулярном уровне. Растение убегает, паразит догоняет. Растение всегда впереди, стремясь уйти от инфекции, а паразит в лице преследующего легко нагоняет своего партнера.

Гипотеза не претендует на универсальность, к тому же она все еще остается одной из> многих гипотез, объясняющих взаимоотношения паразита и хозяина. Мы приводим ее, поскольку она наиболее наглядно позволяет изобразить те схемы взаимодействия продуктов генов устойчивости хозяина и авирулентности паразита, которыми сейчас увлекаются фитоиммунологи.

Кто-то назвал гипотезу строительными лесами вокруг здания, которые помогают его возводить, в том случае, если они поставлены верно. В противном случае их приходится разбирать и начинать все с самого начала.

Наиболее уязвимым местом этой и подобных гипотез является почти полное отсутствие сведений о рецепторе для индуктора и супрессора, кроме уверенности, что они должны быть. Фитоиммунологи последовательно вытягивают из темноты небытия цепь за цепью: сначала фитоалексины, которые позволили обнаружить элиситеры, элиситеры привели к обнаружению супрессора, а те и другие должны вытянуть рецепторы. Будем надеяться, что это вскоре произойдет.

СЕНСИБИЛИЗАЦИЯ,

ИЛИ ПОВЫШЕНИЕ ЧУВСТВИТЕЛЬНОСТИ

Термин сенсибилизация был введен в фитоиммулологию швейцарским фитопатологом Э. Гойманом. Под сенсибилизацией подразумевалось повышение реактивности организма, в итоге чего он становится способным к тому, к чему ранее способен не был. В медицинской иммунологии термин сенсибилизация используется уже давно. Например, состояние сенсибилизации развивается после первичного контакта организма с сывороточными белками другого вида животных, в результате чего наступает состояние резко повышенной чувствительности к этим белкам.

Состояние сенсибилизации у растений можно уподобить аллергической реакции животного организма. Аллергия (от греческого аллос — другой, аргон — действие) — повышенная норма реагирования организма животного и человека, наступающая после повторного введения болезнетворных микробов, чужеродных веществ и др.

У растений могут быть две формы сенсибилизации, одна из них развивается под влиянием самого возбудителя болезни, другая — под воздействием содержащихся в нем веществ. Первая форма сенсибилизации встречается в природе'. Так, заболевшее растение предохранено от реинфекции тем же, а иногда и другим патогеном. Однако подобная форма иммунитета, по мнению Гоймана, является лишь местной и проявляется либо в самом очаге заражения, либо рядом с ним. Исключение составляют вирусные инфекции, при которых вирусы наводняют весь организм хозяина и всюду вызывают местные защитные клеточные реакции, поэтому на первый взгляд создается впечатление гумморальной иммунизации, что, конечно, не соответствует действительности. Возможно, то же происходит и при трахеомикозах, когда возбудитель по сосудам распространяется по всему растению.

Что касается второй формы сенсибилизации, которая может быть достигнута под воздействием продуктов паразита, то она еще более ограничена в своем проявлении, чем первая. Гойман признавал ее только теоретически, поскольку считал, что в природе она не существует. Он полагал, что ввести в растение какой-либо продукт патогена еще возможно, по распределение его по растительным тканям уже маловероятно.

Мы столь подробно остановились на воззрениях крупнейшего фитопатолога лишь с целью показать, что даже он отрицательно относился к практической возможности иммунизации растений на основе их сенсибилизации. Невозможность иммунизации растений он объяснял двумя обстоятельствами: