Светодиод VD1 типа АЛ307 можно заменить любым другим.
Настройку передатчика начинают с установки режимов транзисторов VT2 и VT3 по постоянному току. Для этого подключают миллиамперметр в разрыв цепи питания в точке А и подбирают величину сопротивления резистора R4 такой, чтобы ток был равен 40 мА.
Настройку контуров L1, L2, С5, С7 проводят по максимуму ВЧ излучения. Причем грубо на рабочую частоту настраивают конденсаторами, а точнее — сердечником катушки. Подстроечник катушек L1, L2 должен находиться на расстоянии не более чем 3 мм от центра катушек, т. к. в крайних его положениях генерация может срываться из-за нарушения симметрии плеч транзисторов VT2, VT3.
В качестве чувствительных элементов в них обычно используются электретные микрофоны или датчики типа.
Питание акустических закладок осуществляется от автономных источников питания (аккумуляторов, батарей), электросети переменного тока, телефонной сети, а также от источников питания радиоэлектронной аппаратуры, в которой они устанавливаются.
В зависимости от мощности излучения и типа источника питания время работы акустической закладки составляет от нескольких часов до нескольких суток и даже месяцев. При электропитании от сети переменного тока или телефонной линии время работы не ограничено.
Большинство радиозакладок с автономными источниками питания имеют мощность излучения до 10 мВт и дальность передачи информации до 100–200 м. Однако встречаются закладки с мощностью излучения в несколько десятков милливатт и дальностью передачи информации до 500— 1000 м.
При использовании внешних источников питания (например, электросети или автомобильных аккумуляторов) мощность излучения может составлять более 100 мВт, что обеспечивает дальность передачи информации до несколько километров.
Электронные стетоскопы и закладные устройства с датчиками контактного типа позволяют перехватывать речевую информацию без физического доступа «агентов» в выделенные помещения. Их датчики наиболее часто устанавливаются на наружных поверхностях зданий, на оконных проемах и рамах, в смежных (служебных и технических) помещениях за дверными проемами, ограждающими конструкциями, на перегородках, трубах систем отопления и водоснабжения, коробах воздуховодов вентиляционных и других систем.
При этом возможности по перехвату информации будут во многом определяться затуханием информационного сигнала в ограждающих конструкциях и разборчивостью речи в месте установки контактного микрофона (табл. 3.1,3.2).
Разборчивость речи при перехвате информации средствами разведки по прямому акустическому и виброакустическому каналам
Глава 4. Р
В последние годы подслушивание разговоров с помощью радиомикрофонов получило заметное распространение как в бизнесе, так и в быту. На радиорынках сегодня можно без труда приобрести различные «жучки» любой степени сложности. Обнаружить работающие радиомикрофоны можно с помощью приемников (сканеров), «просматривающих» электромагнитное излучение в широкой полосе частот — от килогерц до гигагерц.
Такие приемники обычно весьма дороги. Но на определенном уровне эту проблему удается решить и с помощью более простых устройств — сигнализаторов и индикаторов наличия высокочастотного поля.
Индикатор высокочастотного радиоизлучения является интересным и полезным прибором, с помощью которого удобно «осязать» состояние электронного изделия или помещения для обнаружения ВЧ излучений.
В этой главе описаны несложные устройства, позволяющие обнаруживать каналы утечки информации и демонстрирующие способы защиты от утечки информации, системы для предотвращения проникновения к охраняемому объекту, использующие различные физические принципы.
Представлены схемотехнические решения, как на доступных дискретных элементах, так и на специализированных микросхемах.
Рассмотрим для начала простой идикатор поля, который представил на сайте http://cxem.nettolik777 (aka Viper). схемы является ее простота. Но этой схеме присущ очень большой а именно низкая фильтрация на входе
Рассмотрим работу принципиальной схемы. Сигнал, принятый антенной WA, детектируется диодом VD1, а выделенный низкочастотный сигнал усиливается микросхемой DA1. Питание микросхемы однополярное. Коэффициент усиления регулируется переменным резистором R5. На выходе устройства подключены стрелочный индикатор для визуального контроля уровня и излучения или головные телефоны для работы в режиме монитора.
Стрелочная измерительная головка должна быть с током полного отклонения 1 мА и сопротивлением рамки не менее 1 кОм. Микросхему желательно использовать с полевыми транзисторами на входе, такую как К140УД8.
Диод VD1 должен быть обязательно германиевый, типа Д9, ГД 507. Антенна WA — медйый провод длиной 30 см.
Схема № 2. Индикатор поля на двух микросхемах, схема которого представлена на рис. 4.2, немного сложнее по конструкции, но значительно удобнее в работе. Прибор удобно использовать для контроля за работой и настройки маломощных передающих устройств, работающих в широком диапазоне частот. Схему также представил на сайте http://cxem.nettolik777 (aka Viper).
Рабочая частота составляет 20—1300 МГц, чувствительность — 1 мВ, пределы локализации лежат в пределах 0,05—7 м. Напряжение питания 4,5–9 В, а ток потребления не превышает 8 мА. Прибор имеет телескопическую антенну.
Рис. 4.2. Схема простого индикатора поля
Это устройство предназначено для локального поиска радиозакладок. Его отличительными особенностями являются:
— простота повторения;
— надежность;
— малые габариты.