Мне кажется, что об этой головоломке можно было бы написать целую книгу.
11. Обвиняемые были сиамскими близнецами.
12. Тот из краснокожих, кто повыше ростом, - мать того, кто ростом пониже.
13. Выходя из дома, человек заводит часы и запоминает, в каком положении находятся стрелки. Придя к другу и уходя из гостей, он отмечает время своего прихода и ухода. Это позволяет ему узнать, сколько он находился в гостях.
Вернувшись домой и взглянув на часы, человек определяет продолжительность своего отсутствия. Вычитая из этого времени то время, которое он провел в гостях, человек узнает время, затраченное на дорогу туда и обратно.
Прибавив ко времени выхода из гостей половину времени, затраченного на дорогу, он получает возможность узнать время прихода домой и перевести соответствующим образом стрелки своих часов.
14. Шкура должна быть белой, так как принадлежит белому медведю, обитающему в Арктике - вблизи Северного полюса.
Обычно ответ подкрепляют ссылкой на то, что медведь, о котором говорится в условиях задачи, должен стоять на Северном полюсе. Это лишь одна, но не единственная возможная ситуация. В каком бы направлении ни ступить из Северного полюса, двигаться всегда будешь на юг. Поэтому если медведь находится на Северном полюсе, а охотник - в 100 м к югу от него, то, пройдя 100 м на восток и обернувшись на север, охотник окажется лицом к Северному полюсу. Все это так, но, как я уже говорил, приведенное решение не единственно. Действительно, существует бесконечно много решений. Например, охотник может находиться на параллели длиной 100 м, а медведь - в 100 м к северу от него. Пройдя 100 м на восток, охотник опишет полную окружность вокруг полюса и вернется в исходную точку. Это второе решение задачи. Но охотник может находиться еще ближе к полюсу на параллели длиной 50 м.
Пройдя 100 м, он дважды опишет полную окружность вокруг полюса и окажется в исходной точке. Но и это еще не все.
Охотник может находиться на параллели длиной в 1/3 от 100 м. Трижды обойдя по параллели вокруг полюса, он также окажется в исходной точке. Поскольку аналогичное решение можно построить при любом положительном целом n, то на Земле существует бесконечно много мест, где могла бы разыграться сценка, описанная в задаче.
Разумеется, во всех этих решениях предполагается, что медведь, находившийся достаточно близко от Северного полюса, непременно должен быть белым медведем. Существует, однако, еще одна возможность, хотя она и весьма маловероятна: некий злонамеренный тип умышленно доставил на Северный полюс бурого медведя, чтобы "насолить" автору задачи.
15. Пятак и одна монета достоинством в 10 копеек. Одна монета (десятикопеечная) не пятак.
16. Как может покойник жениться на ком-нибудь?
17. Человек, живущий на двадцать пятом этаже, - лилипут и не может дотянуться до кнопки "25 этаж" на пульте лифта.
Один мой знакомый (о котором никак нельзя сказать, что он умеет мастерски рассказывать анекдоты) однажды рассказывал эту задачу-шутку в компании, где был и я. Начал он свой рассказ так: "В одном доме на двадцать пятом этаже жил лилипут..."
18. Правильнее было бы сказать, что желток желтый.
19. Поезда в момент встречи будут находиться на одинаковом расстоянии от Бостона.
20. Петухи не откладывают яйца.
21. Двадцать.
22. Несовпадения нет: полтора часа по продолжительности не отличаются от 90 минут.
23. Вряд ли стоит хоронить тех, кто уцелел в авиационной катастрофе!
24. Хирург был матерью Артура Смита.
25. К сожалению, я никак не могу припомнить название этой книги, но не беспокойтесь: рано или поздно я непременно вспомню, как же называется эта книга.
III. Рыцари и лжецы
А. ОСТРОВ РЫЦАРЕЙ И ЛЖЕЦОВ
Существует множество хитроумных задач об острове, населенном "рыцарями", всегда говорящими только правду, и лжецами, изрекающими только ложь. Предполагается, что каждый обитатель острова либо рыцарь, либо лжец. Мы начнем с одной хорошо известной задачи этого типа, а затем я приведу серию новых задач, которые придумал сам.
26.
Итак, начнем с давно известной задачи. Трое жителей острова (А, B и C) разговаривали между собой в саду. Проходивший мимо незнакомец спросил у A: "Вы рыцарь или лжец?" Тот ответил, но так неразборчиво, что незнакомец не смог ничего понять. Тогда незнакомец спросил у B: "Что сказал A?" "А сказал, что он лжец", - ответил B. "Не верьте B! Он лжет! - вмешался в разговор островитянин C.
Кто из островитян B и C рыцарь и кто лжец?
27.
Когда я впервые встретил предыдущую задачу, мне сразу же бросилось в глаза, что C по существу бездействует, исполняя роль, своего рода "бесплатного приложения".
Действительно, когда B высказался, то ложность его утверждения можно было бы установить и без вмешательства C (см. решение предыдущей задачи). Следующий вариант задачи позволяет избавиться от "излишеств" в условиях.
Предположим, что незнакомец задал A другой вопрос:
"Сколько рыцарей среди вас?" И на этот вопрос A ответил неразборчиво. Поэтому незнакомцу пришлось спросить у B:
"Что сказал A?" B ответил: "А сказал, что среди нас один рыцарь". И тогда C закричал: "Не верьте B! Он лжет!"
Кто из двух персонажей B и C рыцарь и кто лжец?
28.
В этой задаче два персонажа: A и B. Каждый из них либо рыцарь, либо лжец. A высказывает следующее утверждение:
"По крайней мере один из нас лжец".
Кто из двух персонажей A и B рыцарь и кто лжец?
29.
Предположим, что A говорит: "Или я лжец, или B рыцарь".
Кто из двух персонажей A и B рыцарь и кто лжец?
30.
Предположим, что A говорит: "Или я лжец, или два плюс два - пять". К какому заключению можно прийти на основании этого утверждения?
31.
Перед нами снова три островитянина A, B и C, о каждом из которых известно, что он либо рыцарь, либо лжец. Двое из них (А и B) высказывают следующие утверждения:
A: Мы все лжецы.
B: Один из нас рыцарь.
Кто из трех островитян A, B и C рыцарь и кто лжец?
32.
Предположим, что A и B высказывают следующие утверждения:
A: Мы все лжецы.
B: Ровно один из нас лжец.
Можно ли определить, кто такой B: рыцарь или лжец?
Можно ли определить, кто такой C?
33.
Предположим, что A высказывает утверждение: "Я лжец, а B не лжец".
Кто из островитян A и B рыцарь и кто лжец?
34.
Перед нами в очередной раз три островитянина A, B и C, о каждом из которых известно, что он либо рыцарь, либо лжец.
Условимся называть двух островитян однотипными, если они оба рыцари или оба лжецы. Пусть A и B высказывают следующие утверждения:
A: B - лжец.
B: A и C однотипны.
Кто такой C: рыцарь или лжец?
35.
Перед нами снова трое островитян A, B и C. А высказывает утверждение: "В и C однотипны". Кто-то спрашивает у C:
"А и B однотипны?"
Что ответит островитянин C?
36. Небольшое происшествие.
Эта головоломка необычна. Кроме того, в основу ее положено подлинное происшествие. Однажды, когда я гостил на острове рыцарей и лжецов, мне встретились два местных жителя. Я спросил у одного из них: "Кто-нибудь из вас рыцарь?" Мой вопрос не остался без ответа, и я узнал то, что хотел узнать.