Выбрать главу

Конечным результатом вышеописанного процесса будет одна или несколько математических формул. Появления исчисления бесконечно малых позволило использовать математические инструменты для этого и других законов, что привело к созданию новых формул, которые, в свою очередь, получили новые физические интерпретации.

Мы говорим о физике как об общей науке. Однако, расширяя наш пример, с помощью закона тяготения мы можем рассчитать, как будет вести себя масса, подброшенная под определенным углом с определенной скоростью. Нам известно, что она будет двигаться по параболе. Так как мы знаем уравнение этой параболы, то сможем определить ее высоту и максимальную длину, а также время, которое масса затратит на прохождение всего пути, и скорость в каждой его точке. Все эти данные имеют огромную важность для баллистики.

Здесь мы имеем дело с прикладной физикой, которая выходит за рамки общей науки и применяется в сфере технологий. На первый взгляд эта схема кажется простой: наблюдение, измерение, гипотеза, закон, который можно записать математически, практическое применение и создание новых технологий. Однако, как это всегда бывает со схематичными объяснениями, эта последовательность слишком упрощена.

Обычно процессы развиваются не только в одном направлении. Иногда приходится несколько раз делать шаги вперед и назад. Созданный механизм, например пушка или межконтинентальная ракета, никогда не работает с первой попытки, следовательно, приходится менять теорию и переписывать формулы. Очень часто над большими научными и техническими проектами работают математики, физики и технологи из разных областей. Среди математиков есть те, кто больше занимается теоретической математикой, и те, кто предпочитает прикладную. Сегодня это различие проводится ясно, но в то время, когда фон Нейман начинал работать в Штатах, его не существовало. Если в мире и был математик, способный создать в своем уме картину полной, объединенной чистой и прикладной математики, это был именно фон Нейман.

УРАВНЕНИЯ

Не всегда, но в большинстве случаев связующим звеном между чистой и прикладной математикой являются уравнения.

То, что уравнение можно сформулировать, не означает, что его можно решить. В истории математики решению уравнений были посвящены целые столетия. Если у нас есть уравнение, которое позволяет рассчитать все составляющие траектории пули, но мы не знаем, как его решить, от него не будет никакой пользы. Решить уравнение значит найти все его решения. Например, решением уравнения

х+3 = 5

будет x = 2.

Однако у такого уравнения, как

х2-Зх+2 = 0,

не будет однозначного решения. Мы можем предпринять множество попыток в поисках решения, но уравнения такого типа решаются определенным способом. Это уравнение второй степени, и его изучают в школе. Алгоритм решения дает нам числа 1 и 2. Если бы мы не знали этого алгоритма, нам пришлось бы действовать методом подбора. В данном конкретном случае мы все довольно быстро нашли бы ответ, но в таком уравнении, как

2,34x4 + 23,56x3 - 0,65x2 + 11,370х - 36,62 - 0,

подбор будет титаническим трудом с мизерными шансами на успех. В качестве альтернативы такую работу можно поручить машине — сегодня мощность процессоров позволяет справиться с этой задачей. Работа математика в таких случаях может быть очень полезной не только для того, чтобы создать уравнения, но и для того, чтобы определить интервал решений. Например, если мы знаем, что искомые числа находятся в промежутке от 0 до 10, это, несомненно, упростит поиск решений методом подбора.

В начале своей жизни в Америке фон Нейман, придя на работу в Лабораторию баллистических исследований, занимался задачей гидродинамической неустойчивости, входящей в область механики твердого тела. Это основополагающий инструмент баллистики, в котором задействованы дифференциальные уравнения в частных нелинейных производных, представляющие большую аналитическую сложность. Ученый задумался о том, чтобы решать такие уравнения при помощи числовых методов. Так родился его интерес к новым электронным вычислительным машинам и возможностям, которые они открывали. Фон Нейман уже знал, что вычисления могут вызывать большие сложности. Разумеется, речь идет не об уравнениях второй степени, а об уравнениях, для решения которых еще не существует алгоритма. Они требовали долгих часов вычислений — computes по-английски. Люди, чья работа заключалась в этих вычислениях, так и назывались — компьютеры. По неизвестной причине женщин на этой должности всегда было больше, чем мужчин.

ПЕРВЫЕ КОМПЬЮТЕРЫ

Одно из значений слова «компьютер» — «считать», «тот, кто считает». Таким образом, предшественники этих машин — аппараты, способные производить вычисления, то есть автоматически совершать арифметические операции. В общем смысле компьютером называется аппарат, в который можно ввести данные (input) и от которого мы ожидаем результат, то есть выходные данные (output).

Уровень автоматизма и сложность производимых операций являются определяющими факторами в развитии вычислительных машин. Тот факт, что вместо того чтобы самим руками передвигать костяшки на счетной доске, мы доверяем вычислительную операцию электромеханическому устройству, означает большой технический прогресс. Было это устройство спроектировано для сложения длинных чисел или же для решения дифференциальных уравнений — технический вопрос, но другого толка. В любом случае счетные устройства появились вследствие необходимости избавить человека от абсолютно механических вычислений, во время которых надо не думать, а выполнять один и тот же рутинный процесс. Следовательно, для него можно написать программу.

В отличие от общих наук, в которых вклад одного человека может привести к удивительным результатам, технологии обычно развиваются поступательно и более медленно. Для того чтобы создать механизмы с шестеренками, стержнями и сцеплением, нужен не только соответствующий чертеж, но и фабрика, которая может изготовить комплектующие. Именно поэтому знаменитые машины (аналитическая и дифференциальная) британского ученого Чарльза Бэббиджа (1791-1871) не получили распространения, хотя уже в наши дни они построены для одного музея и прекрасно там работают. Эти машины считаются одной из основ эры информатики, особенно если рассматривать их вместе с результатами британского математика Ады Августы Байрон (1815-1852), графини Лавлейс, создавшей первый в истории язык программирования. Это повлекло за собой появление основного элемента в эволюции вычислительных машин — сегодня мы называем его программным обеспечением, software. С этого момента у компьютера появились «тело» и «душа» — hardware (аппаратное обеспечение) и software. В связи с этим стоит упомянуть о работе британского математика Джорджа Буля (1815-1864) «Исследование законов мышления», вышедшей в 1854 году. В ней впервые появилась так называемая булева алгебра — новая алгебра логики, в которой переменные могут принимать только два значения (0 и 1), а основными операциями являются AND (и), OR (или) и NOT (нет). На их основе разрабатывали логику современных компьютеров. Наконец, нельзя не вспомнить о французском торговце Жозефе Жаккаре (1752-1834), который еще в 1801 году, задолго до появления первых вычислительных машин, создал автоматический станок, устройство которого было основано на нескольких перфокартах, способных хранить информацию о повторяющихся процессах.