Вздувшаяся р. Пяндж подмыла скалистый берег. Возникший оползень увлек за собой значительную часть полотна автодороги. Транспортная связь между некоторыми районными центрами республики временно прекратилась.
В районе г. Душанбе, в Варзобском ущелье, пришел в движение ледник Обихингоу. Крупный оползень объемом до 5 млн. м3 скальных пород произошел в ущелье р. Шакул-Су (правый приток р. Обихингоу). Он образовал плотину высотой более 150 м, наглухо перегородившую ущелье. Началось наполнение возникшего подпрудного озера. По расчетам, оно должно было прорвать завальный гребень примерно через 12 часов. Опасность удара гигантского водяного смерча нависла над кишлаками, расположенными ниже плотины, где к тому же были собраны для стрижки большие отары овец. Но катастрофы не произошло. Энергичные меры, своевременно принятые местными органами власти по эвакуации людей, техники и скота из зоны затопления, дали свои положительные результаты.
Сильные землетрясения, происшедшие на территории нашей страны в Таджикистане и Азербайджане в 1983 г., не сопровождались крупными склоновыми смещениями.
Сюрприз в этом отношении преподнес оползень в Днепропетровске. По сообщению специальных корреспондентов «Известий» (от 5 января 1984 г.) С. Трояна и Ю. Хренова, оползень возник ночью. Формирование его заняло несколько часов, что позволило вывести людей из-под удара земляного гиганта и избежать жертв. В зону действия оползня попало несколько десятков домов Жовтневского района. Всем людям, выселенным из опасной зоны, были предоставлены квартиры из подготовленного к сдаче жилого или маневренного фонда. Это коренным образом отличает данную ситуацию от аналогичной, создавшейся в районах итальянского г. Анконы или трущоб бедняков, разрушенных большим оползнем в Рио-де-Жанейро. Люди, оставшиеся без крова в этих местах, вряд ли получат квартиры в ближайшие годы. Как еще один пример пренебрежения к нуждам пострадавших от стихийных бедствий трудящихся в капиталистических странах, приведем землетрясение 23 ноября 1980 г. в Италии, в результате которого были разрушены многие города и селения. Лишившиеся крова вправе были рассчитывать на скорейшее решение жилищной проблемы, но восстановительные работы растянулись на годы, и многие селения долгое время лежали в развалинах, а люди ютились во временных жилищах.
Что же послужило причиной явно антропогенного (техногенного) оползня в Днепропетровске? По заключению специалистов, прежде всего отсутствие централизованной канализации в жилом массиве, застроенном индивидуальными домами, находящемся на оползнеопасном склоне.
Интенсивная застройка района благоустроенными домами с водопроводами, газовыми водонагревательными колонками, ваннами привела к повышенному расходу воды. Отсутствие единой канализации привело к тому, что стоки частично фильтровались в землю, насыщали и размывали грунты на крутом склоне балки. В настоящее время в Днепропетровске предусмотрены и осуществляются все меры по укреплению оснований оползневых склонов.
В порядке предупреждения о грозящей опасности позволим себе несколько замечаний о состоянии склонов одного из самых посещаемых уголков нашей страны — Баксанского ущелья. Нескончаемый поток туристов прибывает сюда, чтобы полюбоваться красотами Кабардино-Балкарии, и в частности Приэльбрусья. Дорога к подножию высочайшей вершины Европы — двуглавому Эльбрусу — вьется по дну ущелья, прижимаясь вплотную к его левому борту. Гигантские обнажения скальных пород, уходящие на сотни метров вверх, нависают над долиной громадными уступами, на которых «на честном слове» держатся поистине исполинские блоки. Их собратья, уже обрушившиеся в далекие и недавние времена, лежат у подножия склона и своими размерами (более 1000 м3!) способны убедить любого в неукротимой мощи горных обвалов. На отдельных участках вертикальные стенки Баксанского ущелья иссечены крутопадающими трещинами, расширенными просачивающейся в них водой. Их великое множество, и они, конечно, сильно ослабляют скальный массив. Многие из нависших блоков, рухнув с обрывов, застряли при падении в этих трещинах-расселинах и только потому не достигли дна долины. Торчащие из расселин видимые грани блоков имеют площадь до 50 м2 и дают представление об их размерах. Район ущелья испытывает воздействие землетрясений со стороны Большого Кавказа. Следовало бы в целях безопасности взорвать и убрать со склонов особо неустойчивые блоки, исключив малейшую возможность их обрушения.
Предвидеть опасность!
Каким же образом избежать гибельных последствий склоновых смещений? Ведь невозможно исключить из застройки обширные пространства горных стран с их неповторимыми по красоте ландшафтами и богатствами — залежами полезных ископаемых, гидроэнергетическими ресурсами и безбрежными лесными массивами. Освоение этих богатств требует возведения промышленных и жилых комплексов, рассчитанных на длительные сроки эксплуатации. А кроме того, в современную эпоху небывалых размеров достигла индустрия горного туризма. В долинах, у подножий крутых склонов строятся гостиницы, аэродромы, кемпинги, подъемники и базы отдыха, принимающие десятки тысяч лыжников, альпинистов, спелеологов и просто любителей природной экзотики.
Участники франко-советских полевых симпозиумов 1974 и 1976 гг. подчеркнули, что интенсивное развитие высокогорной рекреации настоятельно требует совершенствования прогноза катастрофических явлений (обвалов, оползней, селей, лавин), от которых все сильнее страдают жители гор. И это требование актуально для всех, кто планирует освоение гористых местностей. Оно приобретает особую значимость в районах, подверженных землетрясениям.
Наиболее важным элементом снижения обвально-оползневой опасности в горных районах является выбор таких строительных площадок, где были бы невозможны подобные склоновые смещения или их вероятность была бы минимальной. Памятуя огромные расстояния, которые нередко покрывают сейсмовозбужденные обвальные массы, необходимо выбирать такие территории для застройки, которые не находились бы на пути каменных лавин и были вне пределов их досягаемости.
Обычно считается, что если произошел оползень или обвал, то склон приобретает более устойчивое положение. Коварство сейсмогравитационных обвалов и оползней заключается в том, что они могут многократно повторяться в одном и том же месте, ибо землетрясение не только сбрасывает неустойчивые массы пород, но и готовит склоны к новым обрушениям.
Существует много методов прогноза обвально-оползневой опасности. Они обобщены в сводках последних лет,[22] в которых, в частности, указывается, что инженерно-геологической основой такого прогноза регионального масштаба являются карты районирования территории по условиям развития и интенсивности проявления экзогенных геологических процессов, в том числе обвально-оползневых. Для локальных участков составляются так называемые карты геодинамического (оползневого) потенциала, дающие вероятностную оценку возникновения оползней. Суть такого прогноза заключается в том, что на большой территории выбираются характерные эталонные участки, в пределах которых тщательно анализируются все природные условия, приводящие к возникновению оползней. Каждому процессу (фактору), способствующему оползанию склона, приписывается условное значение, совокупность которых и определяет в дальнейшем меру устойчивости склонов на других участках изучаемой территории. На картах районирования, составленных по такому принципу, выделяются зоны с очень высокой, высокой, средней, низкой и очень низкой степенью потенциальной оползневой активности. К сожалению, сейсмогравитационные оползни авторами этого метода исключены из рассмотрения.
Практически нет никаких рекомендаций для составления карт обвально-оползневой опасности с учетом сейсмического воздействия и в последней работе зарубежных исследователей.[23] Это и понятно. Слишком велик объем информации, которую надо иметь, чтобы прогнозировать сейсмогравитационные склоновые смещения. Помимо обычных критериев оползневой опасности, объединенных в понятии «геодинамический потенциал» и сохраняющих силу и при прогнозе сейсмогравитационных обвалов и оползней, необходимо учитывать и сейсмические факторы, влияющие на устойчивость склонов: силу и частоту сейсмических колебаний, глубину очагов землетрясений, углы подхода сейсмических волн, уровень сейсмической активности и ряд других.
22
См.: