Понять это легко. Ведь что означают слова «упругость пара больше» или «упругость пара меньше»? Они означают, что при прочих равных условиях в газе вблизи поверхности будет большая или меньшая концентрация атомов вещества капли. Атом, который расположен на искривленной поверхности капли, имеет меньшее число соседей, чем тот, который расположен наплоской. В случаепредельно маленькой капли, состоящей из одного атома, этот атом и находился бы па «поверхности» в единственном числе, вообще не имея соседей. Капля из одного атома, конечно же, никакая не капля, но эта условность помогает почувствовать тенденцию: чем меньше капля, тем меньше соседей у атома, сидящего на ее поверхности. А меньше соседей — меньше связей, удерживающих атом на поверхности, меньше связей — легче оторваться, легче оторваться — большее число атомов это совершит, и следовательно, большая их концентрация будет в газе вблизи поверхности. Именно это строго и описывает формула.
Борис Яковлевич прочел эту формулу по-своему, неожиданно и формально очень строго. Он обратил внимание на то, что она примечательна не только теми величинами, которые входят в нее, но и теми, которые в ней отсутствуют. Из величин, характеризующих вещество капли, в формулу входят лишь поверхностная энергия и объем, приходящийся на один атом. Масса атома не входит. Формально это означает, рассуждал он, что формула годится для вещества с любой массой атома, от бесконечной до равной нулю. Бесконечная масса — это по ту сторону разумного, а вот о «веществе» с нулевой массой «атома» можно говорить вполне серьезно, не забывая, однако, о кавычках. Таким «веществом» является пустота.
Несколько странное соседство слов «вещество» и «пустота». В действительности имеется в виду не «вещество», а отсутствие вещества. Например, в узле кристаллической решетки нет атома, которому следовало бы в этом узле быть. Этот свободный от атома узел можно назвать «атомом пустоты», а физики его иногда называют «вакансией». Очевидно, скопление большого количества «атомов пустоты» должно образовать «каплю пустоты», т. е. пору. Все это по аналогии с реальными атомами и реальным веществом: скопление большого количества, скажем, атомов железа, образует каплю железа. Разумеется, при температуре более высокой, чем температура плавления железа.
Итак, пустой узел в кристаллической решетке — «атом пустоты», пора в кристалле — «капля пустоты», и они должны подчиняться формуле, которая впервые была написана более 100 лет назад и применительно к «капле пустоты» впервые прочтена Борисом Яковлевичем Пинесом.
Теперь о следствиях нового прочтения формулы. И не о всех, а о самом главном, ради которого стоило пристально всмотреться в старую формулу и заново ее прочесть.
Перенос жидкости из капли в блюдце
Капля пустоты (пора) испаряется в кристалл. Вблизи поры много вакансий (зачерненные кружки), вдали — мало
Вот опыт, который демонстрируют на школьных уроках физики или рассказывают о нем. Небольшой стеклянный колпак (перевернутый стакан) установлен на стекле. Под колпаком блюдечко с водой и рядом на предметном стеклышке капли воды. Эти капли надо поместить на стеклышко после того, как пространство под колпаком насытится водяным паром, который образуется над плоской поверхностью воды в блюдце. Через некоторое время капли исчезнут — они испарятся, а возникшие при этом в водяном паре молекулы воды сконденсируются на поверхности воды в блюдце.
Итак, в начале опыта под колпаком было три объекта: вода в блюдце, вода в каплях и насыщенный водяной пар. Опыт окончился, когда один из объектов исчез — капель не стало. Здесь все ясно: согласно формуле, давление пара над изогнутой поверхностью водяной капли больше, чем над плоской поверхностью воды в блюдце, и пар под влиянием этой разности давлений двигался по направлению к блюдцу — уходил оттуда, где его давление больше, и приходил туда, где его давление меньше. Чтобы вблизи своей поверхности поддерживать давление, предписываемое ей формулой, капля должна все время испаряться. Она это добросовестно делала и в конце концов исчезла.