Стремление капли завернуться в пленку мы объяснили, сославшись на силу, изображенную жирной стрелкой. Можно и в иных словах и понятиях описать процесс, запечатленный на кинограмме, смонтированной из кадров фильма, в котором заснята кинетика заворачивания водяной капли в пленку. Из рисунка следует, что α21 + α10• cos φ = а20. Так как cos φ≥0, то α21 < α20 и, следовательно, заведомо меньше, чем сумма α10 + α20. Это означает, что выгодно вместо двух свободных поверхностей капли и пленки создать одну поверхность, вдоль которой капля и пленка соприкасаются. А для этого капле следует в пленку завернуться, что она и делает.
Последовательность моментов ваворачивания водяной капли в лепесток из полимерной пленки
Внимательно присмотритесь к каплям, которые после дождя остались на поверхности тонких листиков, и вы увидите, что вблизи капель листики изогнуты значительно больше, чем это могло бы произойти лишь под влиянием их веса. Капли явно готовили себе «постель» поудобнее.
Опыт второй был поставлен чешскими физиками. На полированную поверхность массивного кристалла железа наносилась капля расплавленного свинца. Железо было раскалено до температуры более 1000° С, и поэтому свинцовая капля оставалась жидкой. Кристалл железа — не полимерная пленка, и изогнуть его вокруг себя капля не может. Поэтому поступает она иным способом: выкапывает под собой ямку такой формы, чтобы вдоль контуров капли все три силы скомпенсировались так, как показано на рисунке. Эта «удобная» ямка должна иметь такую фор-
му, чтобы давление, обусловленное изогнутой поверхностью жидкий свинец — воздух, было в точности равно тому давлению, которое обусловлено искривленностью поверхности жидкий свинец — твердое железо, т. е. дна ямки.
Равенство двух этих давлений означает, что α10/R10= α12/R12 . Итак, давления равны, а кривизна двух поверхностей различна, потому что различны соответствующие поверхностные энергии.
Взаимное расположение сил, действующих на контур капли, которая «удобно устроилась» на твердой поверхности
Выкопав под собой ямку, капля как бы перенеслась в невесомость — как и в невесомости, капиллярное давление оказалось одинаковым вдоль всей поверхности, ограничивающей каплю.
Естественно возникает вопрос: каким образом капля выкопала ямку? Ответим на него. Вначале, когда капля была расположена на плоской поверхности железа, она прижималась к нему тем давлением, которое обусловлено искривленностью поверхности свинец — воздух. Под влиянием этого давления железо из-под свинцовой капли перемещалось в области вокруг нее. Перемещалось в процессе диффузии поатомно, атом за атомом — опыт ставился при высокой температуре, когда диффузия в железе происходит достаточно активно.
Надо подчеркнуть, что в описанном опыте капиллярное давление, которое обусловливает перемещение железа из-под свинцовой капли, существенно больше давления, обусловленного ее весом, так как капля свинца была очень «маленькая» в том смысле, в каком мы об этом говорили в очерке об опыте Плато.
Итак, в названии очерка все точно. Попав на твердую поверхность, капля действительно готовит себе удобную постель: либо изгибает подложку, если ей это удается, либо выкапывает для себя удобную ямку.
Аналогия рождается на перекрестках памяти и раздумий и иногда связывает воедино образы и события, состоящие в очень дальнем родстве. Неожиданная аналогия, даже отдаленная или поверхностная, родившись вовремя, может помочь исследователю выйти из тупика и осветить путь к решению.
Когда-то, в конце 40-х годов, я участвовал в экспериментальной работе. Ее цель заключалась в определении физических характеристик вещества, которое ранее не исследовалось. Ранее этого вещества в чистом виде просто не было — ценой больших усилий его получили химики.