Выбрать главу

Первое давление — оно называется капиллярным, или лапласовским, — определяется хорошо известной формулой:

   

а R — радиус капли. Это давление, возрастая с уменьше­нием размера капли, в случае очень маленьких капель может быть огромным. Учтя, что поверхностное натяже­ние воды α = 70 дин/см, легко убедиться, что микроско­пическая водяная капелька, радиус которой одна сотая микрона (R  = 10 -6 см), сжата лапласовским давлением, величина которого около 150 атмосфер!

Теперь о давлении, которое расплющивает лежащую каплю. Назовем его гравитационным Pg. Величину этого давления, равного отношению силы тяжести капли, масса которой т, к площади контакта между каплей и твердой поверхностью, точно определить трудно, потому что неизвестна величина этой площади. Его можно оценить, посчитав, что площадь контакта приблизительно равна квадрату радиуса капли.

В этом предположении

 

Все рассуждения о почти сферической форме «малень­кой» капли могут совершенно потерять смысл, если силы поверхностного натяжения на границе капля — твердая поверхность растянут каплю, заставят ее растечься тонким слоем. Однако во многих случаях, когда капля не смачи­вает подложку, наши рассуждения остаются в силе. Именно такие случаи мы и обсуждали.

«Маленькие» капли совершенной формы можно наблюдать после дождя на листьях многих деревьев. Не смачивая лист, капли располагаются на нем сверкающими шари­ками. Особенно хороши они натыльной, ворсистой сто­роне. Капли висят как бы в воздухе, поддерживаемые вор­синками. Прекрасные «маленькие» капли можно увидеть после дождя на кончиках игл кактуса или ели.

Вернемся к опыту Плато, к капле, находящейся в не­весомости. Советский космонавт В. Н. Кубасов наблюдал жидкие капли в условиях невесомости. Он производил опыты по электросварке плавящимся электродом в кос­мосе. Процесс сварки был запечатлен на кинопленке. Оказалось, что на кончике электрода формируется боль­шая, почти сферическая капля жидкого металла, сущест­венно больше той, которая образуется при сварке в зем­ных условиях. Капли жидкого металла, случайно отор­вавшиеся от электрода, свободно парят около места сварки, подобно тому как движутся капли в опыте Плато, если их слегка толкнуть.

Творческая фантазия Плато более 100 лет назад роди­ла идею наземного опыта с каплей в искусственно создан­ной невесомости. Быть может, он тогда думал и о космосе?

Воспоминание о лекции профессора Френкеля

Начну с банальной мысли о том, что впечатления юности запоминаются надолго — в звуках, в цвете, в незнача­щих деталях, которые тогда, в давно прошедшие годы, ка­зались особенно важными.

Лекцию Якова Ильича Френкеля я слушал поздней весной 1939 года. Он тогда приезжал в Харьков и в ма­ленькой университетской аудитории амфитеатром, кото­рая еще с середины прошлого века торжественно называ­лась «большой физической», читал лекцию о капельной мо­дели ядра. Теперь, спустя более трети века, когда во всех подробностях известны драматические события тех дней, когда закладывались основы ядерной энергетики, ясно, что с профессором Френкелем, который всего за несколь­ко недель до приезда в Харьков предложил идею капель­ной модели ядра, в аудиторию вошла сама история. Тог­да же мы, студенты-физики, шли слушать очередную лекцию «гостевого» профессора, одну из многочислен­ных лекций, которые в «большой физической» часто чита­ли нам университетские гости.

Начал лекцию Френкель спокойно, размеренно, но по­степенно академическая размеренность исчезла: он говорил так, как можно говорить лишь о самом сокро­венном, о чем непрерывно думаешь и кажется, что открыв­шееся тебе прозрение и ясность абсолютно необходимо передать слушателям. Именно на этой лекции я понял смысл выражения «слушать затаив дыхание». Затаив, возможно, для того, чтобы не было лишних звуков, а возможно, чтобы не отвлекаться для дыхания.

Формул профессор почти не писал. Нарисовав мелом на доске водопроводный кран с набухающей каплей на конце, он начал рассказывать об аналогии между каплей воды и каплей ядерной жидкости — атомным ядром. До достижения некоторого размера капля на кончике крана устойчива, по крану можно щелкнуть, и капля не оборвет­ся (он щелкнул по нарисованному крану). Когда же, на­бухая, капля достигнет определенного размера, она сама оборвется. И неожиданно заключил: периодическая сис­тема потому и оканчивается на уране, что тяжелая капля ядерной жидкости — ядро урана — велика и находится на пределе устойчивости, подобно той капле воды на кон­чике крана, которая вот-вот оторвется от него. Когда после этого как само собой разумеющееся он предсказал воз­можность спонтанного деления ядра урана, возникло ощу­щение провидения.