Маленькое жидкое включение в монокристалле натриевой селитры движется по направлению к крупному включению и поглощается им
Второй эпизод в фильме был еще интереснее. В нем тоже была заснята маленькая движущаяся капелька в кристалле, однако лампа в этом никакого участия не принимала. Опыт был задуман хитро. В непосредственной близости от маленькой капли, движение которой надо было наблюдать, находилась крупная капля неправильной формы. В процессе преобразования ее формы в более правильную уменьшалась поверхность, и значит выделялась некоторая энергия, которая ранее была связана с поверхностью, а затем превратилась в тепло. Вот эта уменьшающая свою поверхность капля играла роль источника тепла, по направлению к которому двигалась маленькая капля. В заснятом эпизоде маленькая капля движется к большой и сливается с ней.
Успех опытов Леммлейна был предопределен удачным выбором объекта или, точнее, тем, что растворимость натриевой селитры в воде очень существенно меняется с изменением температуры. И поэтому даже незначительная разность температур между лобовой и тыльной стенками оказывается достаточной, чтобы движение капли можно было заметить за «удобное» время, а не за тысячи лет, например.
Леммлейн был пионером, а после него появилось множество исследований, посвященных движению жидких капель в кристаллах.
Быть может, любопытное явление — движение капель в кристалле — и не привлекло бы к себе внимания, если бы оно было подобно соловьиным трелям, которые, как известно, до сих пор в инженерной практике не применялись. Но оказалось, что движение капель можно использовать для решения многих практически важных задач. Назовем для примера две из них.
Получение пресной воды из морской. В процессе замерзания морской воды образуются капли с повышенным содержанием соли. Если их изгнать из льда, оставшийся лед, свободный от капель, будет содержать соль в количестве меньшем, чем морская вода, т. е. окажется частично опресненным.
Упрочнение льда. В условиях Крайнего Севера лед — строительный материал, и важно, чтобы он был прочным. Его прочность, однако, понижается из-за содержащихся в нем жидких капель. Надо освободиться от них, и тогда лед станет более прочным. Сделать в принципе это можно, заставив капли двигаться до тех пор, пока они не выйдут из льда.
Процесс частичного освобождения льда от капель происходит и самопроизвольно. Глубинные слои льда ближе к воде более теплые, чем те, которые граничат с холодным воздухом, и, следовательно, капли соленой воды будут двигаться по направлению к воде. Вот почему глубинные слои льда оказываются и менее солеными и более прочными.
Капля в кристалле явно достойна внимания естествоиспытателей.
Вспомните детскую (и не только детскую) забаву — почти горизонтально швырять плоские камешки на спокойную поверхность реки или моря и следить, как они скачут по водяной глади, многократно отражаясь от поверхности воды. Скачущий камешек оставляет за собой последовательность круговых волн, расходящихся от тех точек, где он соприкасался с водой. Вскоре волны затухают, и вода не сохраняет воспоминаний о камешке, проскакавшем по ней.
Камень, брошенный с недостаточной скоростью неумелой рукой, может, разок подпрыгнет, а скорее всего при первом соприкосновении с водой пойдет ко дну. Мастерство бросающего заключается в том, чтобы швырнуть камешек с максимальной скоростью и под очень малым углом к поверхности воды. В этом случае составляющая скорости, направленная в воду, мала, соприкосновение камня с водой происходит импульсно, и по отношению к такому воздействию на нее вода ведет себя почти как твердое тело. В очерке «Капля камень долбит» об этом свойстве воды рассказано подробно.