Строительство железных дорог в свое время также проходило с большими трудностями: скептики могли считать, что пройдет год-другой и люди бросят прокладку дорогущих рельсов протяженностью тысячи километров и вернутся к старым добрым лошадям. Однако эффективность новых технологий, огромные прибыли и само время неминуемо ломали старые каноны, изменяя привычный уклад жизни каждого человека до неузнаваемости. В области обработки больших данных прогресс мчится вперед с огромной скоростью, возможно, опережая наше о нем представление. Всего десять лет назад сам термин big data встречался в основном в узкоспециализированной литературе (и в другом значении), тогда как сегодня подобный подход к получению информации и связанные с ним возможности развития экономики и общества вызывают все больший интерес и широко обсуждаются. Совсем недавно обработка больших данных казалась сложным процессом, доступным лишь серьезным ученым и крупным компаниям, а в наши дни уже создан широкий общедоступный инструментарий, позволяющий любому человеку освоить азы работы с большими данными, собирать данные, извлекать из них информацию для продажи или личной пользы. Информационные корпорации вроде Google создают общедоступные интерфейсы, предоставляющие пользователям конечную информацию как результат обработки больших данных (например Google Trends, Correl и т.д.).
Новорожденный ребенок, открывая глаза, получает огромное количество новой информации; для выработки системы ее обработки уходят дни, пока он не научится в полной мере пользоваться новым инструментарием. Так же и человек, получивший доступ к большим данным и компьютеру, еще не в полной мере может разобраться в них, однако с каждым годом их обработка и анализ становятся возможны все более широкому кругу, а инструментарий постоянно упрощается.
Мы можем представить, как в недалеком будущем с развитием технологий и общедоступных инструментов обработки данных человек сможет взглянуть на предмет и сразу получить ответ на многие вопросы, сегодня кажущиеся нам нерешаемыми.
Человек и большие данные
Как знание о бездушном предмете или процессе позволяет угадывать его дальнейшие изменения и развитие, так и простое знание индивида позволяет предугадывать и управлять его поведением. «Алгоритмы знают вас лучше, чем вы знаете сами себя», — говорит Ксавье Аматриэн, бывший специалист по сбору данных в Netflix. Знание модели человеческого поведения, сильных и слабых сторон индивида, о которых он сам, вероятно, и не догадывается, дает возможность не только высвободить его скрытый потенциал, рационализировать и улучшить его жизнь, но и открывает обратные возможности — незаметно для него самого манипулировать человеком, заставлять делать вещи, противоречащие его интересам, зарабатывать меньше, тратя на работу больше времени, провоцировать на покупку зачастую не нужных ему товаров и так далее.
Большие данные позволяют предсказывать поведение людей лучше, чем когда-либо. Взрослый человек, обладающий богатым жизненным опытом (и гораздо большими, чем у детей, данными в голове), может легко предугадывать поведение ребенка, направлять и учить его, или же без труда обмануть, обидеть. В новую эпоху мы, взрослые люди, не владеющие большими данными о нас и о социуме, ежедневно получаемые агрегаторами крупных корпораций и государств, по сути становимся для них такими же управляемыми детьми.
Современные компьютерные игры, социальные сети, мобильные приложения, контекстная реклама — все это использует большие данные для извлечения из человека максимальной прибыли, заставляя его уделять больше времени их продукту. Владельцы больших данных и ресурсов для их обработки используют их возможности самостоятельно, другие вынуждены покупать результаты обработки у корпораций вроде Google или Facebook и платить маркетинговым или информационным компаниям за их внедрение.
Часто приводимым примером ценовой дискриминации является использование больших данных в крупных казино. Изучая особенности своих клиентов на основе анализа больших данных, владельцы казино знают, когда вовремя вывести игрока из игры (например, предложением бесплатного обеда), чтобы он не проиграл слишком много своих денег и вернулся в казино опять, в сумме принеся заведению еще большую прибыль, оставаясь при этом его постоянным клиентом26. Вышедший в 2014 году на Всемирном форуме, посвященном приватности, доклад27 описывает то, как компании, собирая большие данные о поведении американцев, в результате их обработки формируют потребительские профили, позволяющие понять, сколько каждый конкретный гражданин готов заплатить за тот или иной товар, характеристику его покупательной способности — извлекать из каждого человека максимальную прибыль, используя созданные им же самим данные.