Принято считать, что наследственность определяется так называемыми генами. Но существуют ли гены? Наука спорит об этом уже добрых сто лет. Механизм деятельности генов до конца еще не выяснен. Выдвинуто много любопытных и весьма правдоподобных гипотез, до некоторой степени подтвержденных опытными данными. Серией опытов доказано, что в каждой хромосоме содержится множество генов, определяющих ряд отличительных признаков особи. Знаменитая муха дрозофила, ставшая притчей во языцех, помогла выявить порядок расположения генов по длине хромосом.
Как выглядит ген? Нарисовать его портрет покамест сложно, но некоторые черты «лица» начинают проясняться — считают, что ген представляет молекулу (или ее участок — локус) в форме длинной цепи. Вдоль нее расположены в строгом порядке боковые группы атомов. Молекула эта подобна печати. Она может дать любое число отпечатков.
Вероятно, портрет этот упрощен и далек от сходства. Для нас важно другое.
Мы видели, что облучение зародышевой клетки радиоактивными частицами — рентгеновыми лучами, нейтронами, быстрыми электронами — вызывает серьезные последствия. Попадая в молекулы гена, они либо откалывают от них какую-то частицу, либо меняют их структуру иным путем (ионизируя водную среду и повышая концентрацию заряженных атомов водорода и гидроксильных групп). Эти изменения — мутации — необратимы. Они передаются по наследству (в соответствии с законами Менделя!). Чаще всего мутации вредны, они порождают химеры, организмы, не достигающие зрелости. Должно ли это удивлять нас? Ни в коем случае. Представим себя в роли скульптора, который решил высечь из камня статую, обстреливая ее с приличного расстояния из пулемета. Получить нужную фигуру — это значит отсечь от камня лишнее. Добавьте к этому, что у скульптора завязаны глаза и он может определить, что попал в цель, только по звуку пули, чиркнувшей по камню. Однако повязка не вечно будет закрывать глаза ваятеля.
Произвольно вызываемые мутации осуществимы. Мутации, дающие необходимый эффект, станут когда-нибудь самым надежным и точным инструментом в руках селекционера.
Биолог будет знать наверняка: обстреливая данный участок молекулы, он получит сорт с повышенной урожайностью; попадая в соседнюю группу атомов, он получит засухоустойчивое растение. Существо по заказу станет реальностью. Не за горами время, когда секреты гена, особенности каждого участка его молекулы станут достоянием науки. Управление наследственностью растений, изменение ее в нужную сторону перейдет из области теории в практику сельского хозяйства. Радиационная генетика позволит отказаться от кустарщины и эмпиризма.
Электронная оптика и здесь сослужит свою службу.
Мы знаем, что быстрые электроны можно отклонять от их пути и конденсировать, подобно тому как увеличительное стекло конденсирует лучи света. В электронном микроскопе пучок электронов изгибается и фокусируется с таким расчетом, чтобы изображение предмета, через который прошли электроны, воспроизводилось с огромным увеличением. Этот замечательный прибор позволяет видеть мельчайшие детали молекулы, только в два-три раза превышающие диаметр обычных атомов, образующих живую материю. Представьте на минуту, что у вас в руках бинокль. Переверните его стекла наоборот. Предметы, которые оптика приблизила в несколько раз, теперь будут во столько же раз уменьшены. Так можно поступить и с линзами электронного микроскопа. Они позволяют создать тысячекратно уменьшенное изображение источника электронов. Значит, можно сконцентрировать электронный пучок на участке всего в три диаметра атома. Что это даст? Направим этот тончайший лучик на хромосому половой клетки, на какой-то определенный участок, и мы получим нужный генетический эффект. Мы сможем регулировать этот эффект, меняя время, дозу облучения. Мы будем обстреливать только те участки, мутации которых принесут нам желаемые изменения в наследственности всего организма.
Возможно, и в этом случае многие мутации окажутся неблагоприятными. Но зато теперь нам не придется в течение долгого времени выращивать тысячи новых особей, чтобы потом отбросить тысячи неудачных вариантов и отобрать единичные перспективные экземпляры. Лауреат Нобелевской премии Дж. Томсон считает, что такой метод можно было бы без особых затруднений применить к растениям и, пожалуй, даже к низшим животным.
Научимся ли мы когда-нибудь направлять электроны с точностью, достаточной, чтобы вызывать нужную мутацию? Это вопрос времени. Надо прежде проникнуть в механизм действия генов. Может случиться так, что мы всех тайн этого механизма не раскроем. Мы только будем знать, какой именно ген, какой именно участок молекулы претерпел изменения. Но и тогда перспектива выведения совершенных видов растений необычайно расширится. Возрастут и скорость выведения новых пород и размах изменчивости. Мы будем использовать эти мутации так же, как сегодня используем клубеньковые бактерии, не зная до конца механизма их действия. Как использовало человечество для своих нужд ферменты, тысячелетиями не подозревая об их существовании.