«Всасывающие» молекулы
Кисель – широко известный напиток, изготавливаемый из крахмала с добавлением ягод. В быту часто используют также крахмальный клейстер для наклеивания обоев. В природе крахмал играет роль источника резервного питания растений, он накапливается в клубнях, плодах и зернах. Полимерные молекулы крахмала собраны из тех же самых циклов глюкозы, только цепи не линейные, а разветвленные. Крахмал набухает в горячей воде, но не растворяется, а растворимые формы можно получить при частичном расщеплении полимерных молекул, это происходит при более высоких температурах (например, при выпечке хлеба), а также при действии неорганических кислот или ферментов. Напомним, что ферменты – это биологические катализаторы: например, в слюне содержится фермент, расщепляющий крахмал, поэтому при длительном пережевывании крахмала во рту появляется сладковатый вкус.
Среди продуктов расщепления крахмала наиболее интересны циклодекстрины: это крупные циклы, собранные из 6–8 молекул глюкозы. Изображать молекулы можно различными способами: в виде структурной формулы, шаростержневой модели или же структуры с ван-дер-ваальсовыми радиусами (они показывают реальный объем, занимаемый молекулой в пространстве, разумеется, в масштабе). Последний вариант ясно демонстрирует, что циклодекстрин – это усеченный конус с цилиндрическим каналом внутри (рис. 1.46).
Самая важная особенность такой молекулы состоит в том, что все гидроксильные группы -ОН расположены на внешней поверхности конуса, а во внутреннем канале они отсутствуют. В результате такое соединение растворимо в воде (за счет внешних гидрофильных групп – ОН), но, если в систему добавить гидрофобное (водоотталкивающее) соединение, например углеводород, оно «втянется» во внутренний гидрофобный канал конуса. Если ранее химики проявляли большую изобретательность, чтобы «продернуть» линейную молекулу внутрь цикла, то циклодекстрины «делают это сами». Образующиеся соединения называют в научной литературе «хозяин-гость», или соединениями включения. Благодаря этому становится возможным перевести в водный раствор некоторые жирорастворимые препараты, например витамины А и D.
Помимо этого, циклодекстрины открыли принципиально иной способ создавать ротаксаны. Напомним, что ротаксаны – это соединения, где две молекулы (как в катенанах) соединены без участия химических связей, конструкция представляет собой осевую молекулу, пронизывающую кольцевую молекулу, на концах осевой молекулы находятся объемные «заглушки», которые не позволяют кольцевой молекуле соскользнуть с оси.
Общая схема такова: молекула углеводорода, содержащая на концах заранее предусмотренные реакционные группы, втягивается внутрь цилиндрического канала, затем торчащие наружу реакционные группы заменяют объемными заглушками (рис. 1.47).
Если молекула, входящая внутрь полого конуса, достаточно длинна, то на нее навешивается несколько конусов и получается конструкция, напоминающая ожерелье. Затем конусы (циклодестрины) соединяют мостиками, а полимер, играющий роль нитки, удаляют. Получается полимерная молекула, представляющая собой полую трубку. На данный момент удалось соединить таким образом 15 молекул циклодекстрина, молекулярная масса полимера 20 000 (рис. 1.48). Такие структуры могут быть использованы для разделения различных веществ.
Кольчуги, решетки, сетки
Сплетенные кольца, помимо их использования в различных эмблемах и для изготовления разнообразных украшений, издавна применяли для создания изделий особого типа. Речь идет о кольчугах, фактически представляющих собой ткань из металлических колец. Кольчуги защищали в прежние времена воинов от рубящего и колющего оружия. Существует несколько способов плетения кольчуг, и некоторые современные мастера-энтузиасты, увлеченные историческими деталями древних сражений, прекрасно владеют этим искусством.
В наши дни кольчуги, изготовленные из сверхпрочной тонкой металлической проволоки, используют для предохранения рук у работников мясоперерабатывающих заводов, защиты аквалангистов от нападения акул и в некоторых травмоопасных профессиях (рис. 1.49).
Естественно, химиков давно привлекала идея создавать подобные молекулы, однако для ее реализации потребовалось пересмотреть некоторые устоявшиеся взгляды.
До сих пор ученые рассматривали катионы металла в синтезе катенанов как строительные леса, которые после окончания работы следует убрать, чтобы полюбоваться полученным изделием. Постепенно многие стали приходить к мысли, что катионы металла заслуживают «более уважительного отношения». Они могут на равных правах с органическими молекулами присутствовать в готовом соединении.