ln N(i) = A - B x lni (1)
Справедливость приведенного уравнения была подтверждена в серии работ российских специалистов по математической политологии (Собянин, Суховольский, 1995), выполнивших анализ результатов выборов народных депутатов России в 1990 году, выборов Президента России в 1991 и 1996 годах, а также данных о выборах в ряде стран, начиная с выборов президента Франции в 1848 году, где победил Луи-Наполеон Бонапарт.
Этот математический результат нетривиален по своей природе. Специалистам – физикам, химикам, металлургам, демографам, экологам и представителям многих других областей знания, имеющих дело с большими массивами статистических данных, хорошо известно, что указанная численная закономерность носит общий характер и описывает ситуацию "свободной конкурентной борьбы" за распределение конечного количества каких-либо условных "благ". Оказывается, все мыслимое многообразие объектов, ситуаций и причинно-следственных связей не меняет характера этой зависимости: коль скоро имеется свободная конкуренция, ее результаты в любом случае укладываются на "логарифмическую прямую" – меняются лишь константа A и крутизна наклона прямой B. И наоборот: коль скоро имеются отклонения от условий свободной конкуренции, точки неминуемо отклоняются от прямой – и тем дальше, чем значительнее "факторы несвободы". Так, например, "конкуренция" городов за численность проживающего в них населения приводит в цивилизованных странах именно к такой зависимости. Между тем, в СССР такие города, как Москва, Ленинград и некоторые другие центры значительно отклонялись от "прямой свободной конкуренции" – вследствие административных ограничений, связанных с паспортным режимом. Аналогичным образом, свободная конкуренция приводит к той же зависимости между размерами крупнейших состояний и "местом", занимаемым их владельцами в списке таких состояний – разумеется, в тех частях света, где такие списки существуют. В точности таков же известный зоологам закон распределения хищников по массе (при отсутствии антропогенных факторов), и т.д.
Впервые закономерности этого рода установил итальянский социолог и математик В.Парето, занимаясь распределением жителей страны по величине их богатства; впоследствии к подобным же выводам пришел американский лингвист Дж.К. Ципф, изучая распределение частоты употребления слов в текстах. Различные варианты написанного выше соотношения носят название закона Ципфа – Парето. Методы анализа, связанные с изучением ранговых распределений, получили широкое распространение в лингвистике, наукометрии, экологии. Соблюдение соотношения (1) для избирательного процесса означает, что существует "свободная конкуренция" всех кандидатов, имеющих возможность беспрепятственно объяснять избирателям свои политические взгляды и политическую платформу.
Выполнение закона Ципфа – Парето для избирательного процесса означает, что каждый из кандидатов, каждая из партий и политических групп избирателей, голосующих по определенному типу, обладает своей собственной политической платформой, не перекрывающейся со всеми остальными. Имеющиеся кандидаты должны перекрывать все возможные предпочтения, имеющиеся у избирателей; тогда доля избирателей, ищущих свой выбор вне предлагаемого списка кандидатов, достаточно мала, и уравнение (1) с высокой точностью описывает распределение голосов избирателей. В противном случае в распределении (1) могут возникнуть пустые "ниши", и весь анализ усложняется.
Расчет параметров A и B, входящих в уравнение (1), производится по данным о численности избирателей, голосовавших за разных кандидатов или за разные политические группы, с помощью методов регрессионного анализа. Параметр A в уравнении (1) представляет собой логарифм числа избирателей, отдавших свои голоса за кандидата-лидера. Величина B – коэффициент предпочтения – характеризует наклон прямой (1) и служит численной мерой однородности выбора избирателей. Если B = 0, это означает, что у избирателей нет никаких предпочтений одних партий или кандидатов перед другими, и что все они получили на выборах одинаковое число голосов. Напротив, при больших значениях крутизны B партии-аутсайдеры получают очень мало голосов по сравнению с партиями-лидерами (однако, на практике параметр B почти никогда не бывает больше единицы). Если же замечаются отклонения от прямой типа (1), то при сделанных выше предположениях это указывает на отсутствие условий свободной политической конкуренции. Это может быть вызвано либо наличием каких-то дополнительно действующих внешних факторов, например, запугивания избирателей возможными политическими и экономическими репрессиями в случае голосования (или неголосования) за того или иного кандидата, либо прямой фальсификацией результатов выборов при подсчете голосов в избирательных комиссиях разного уровня. На рисунке 2 приведен типичный график рангового распределения численности голосовавших на выборах в России. Как можно видеть, между численностями различных групп избирателей и рангами этих групп (т.е. местами кандидатов) в логарифмических координатах (по обеим осям) практически наблюдается линейная связь.