Легко видеть, что на самом деле паук ползет по пяти из шести различных сторон комнаты! Отметив путь, сложите вновь коробку (удалив сторону, по которой паук не ползет), и вид наикратчайшего пути окажется довольно удивительным. Если бы паук придерживался пути, который большинству, очевидно, покажется кратчайшим (путь 1), то ему пришлось бы проделать 42 фута! На пути 2 расстояние составило бы 43,174 фута, а длина пути 3 оказалась бы равной 40,718 фута. Я предоставляю читателю определить наикратчайшие пути, когда паук и муха находятся соответственно от потолка и пола на расстояниях 2, 3, 4 и 5 футов.
76. Брат Джон дал первому человеку три большие и одну маленькую бутылки, полные вина, и одну большую и три маленькие пустые бутылки. Каждому из двух оставшихся он дал две большие и три маленькие бутылки вина и две большие и одну маленькую пустые бутылки. Таким образом, каждый из трех человек получил равную долю вина и одинаковое число бутылок каждого размера.
77. На рисунке показано, как следует разрезать кусок материи на две части. Опустите правую часть на один «зуб», и вы получите правильный квадрат с симметрично расположенными розами.
78. Небольшое исследование данной головоломки убедит читателя, что Хендрик никогда не сможет схватить черную свинью и что белая свинья никогда не будет схвачена Катрюн.
Каждая свинья просто вбегает в один из ближайших углов и выбегает из него, и ее никогда не удастся схватить. Как это ни странно на первый взгляд, датчанин не может схватить черную свинью, а его жена белую! Но каждый из них без труда может поймать свинью другого цвета. Так что если первый игрок решит послать Хендрика за белой свиньей, а Катрюн за черной, он безо всякого труда выиграет за небольшое число ходов.
Это на самом деле столь просто, что даже нет необходимости приводить запись партии. С помощью этой игры мы решаем головоломку из реальной жизни. Датчанин и его жена не могут поймать свиней, потому что по своей простоте и незнанию нрава датских свиней каждый бегает не за тем животным, за которым нужно.
Принцип, на котором строится эта головоломка, известей шахматистам как «переход в оппозицию». В случае головоломки ходы напоминают ходы шахматной ладьи с дополнительным условием, что ладья может ходить лишь на соседнюю клетку. Если число клеток в том же ряду между мужчиной или женщиной и свиньей нечетно, то свинью схватить нельзя, если же это число четно, то схватить ее можно. Число клеток между Хендриком и черной свиньей, а также между Катрюн и белой свиньей равно 1 (нечетное число), следовательно, они не смогут поймать соответствующих свиней. Но число клеток между Хендриком и белой свиньей, а также между Катрюн и черной свиньей равно 4 (четное число), значит этих свиней они смогут легко поймать.
79. Начав с 5, первый игрок может всегда выиграть Если ваш противник тоже пойдет с 5, то вы пойдете с 2 с суммой 12. Далее, когда он будет ходить 5, вы ходите 2, и если на каком-нибудь шаге он выпадет из ряда 3, 10, 17, 24, 31, вы вступите в него и выиграете. Если же после вашего первого хода 5 он вместо 5 выберет что-то другое, вы сделаете 10 или 17 и выиграете. Первый игрок может также выиграть, начав с 1 или 2, но игра довольно запутанна. Однако она стоит того, чтобы читатель изучил ее.
80. В эту головоломку заложена восточная хитрость. И дело не в том, что были озадачены представители пяти стран. Гораздо более были бы озадачены инженеры в своих попытках проложить все эти извилистые пути. На рис. 1 показаны направления для всех пяти систем линий, так что никакая линия не пересечет другие и при этом способе расстояния, видимо, будут самыми короткими.
Быть может, читатель хочет знать, сколько различных решений есть у этой головоломки. На это я отвечу, что число решений неопределенно, и объясню, почему. Если мы просто рассмотрим случай одной линии А, то на рис. 2 показан один путь, на рис. 3 – второй, на рис. 4 – третий и на рис. 5 – четвертый. Если путь на рис. 3 отличен от пути на рис. 4, а это несомненно так, то путь на рис. 5 отличен от пути на рис. 4. Но, последовательно взглянув на рис. 2, 3, 4, 5, мы видим, что этот процесс можно продолжать неограниченно, а поскольку всегда есть пути (сколь бы длинны и извилисты они ни были) от станций В и Е к соответствующим главным путям, то число путей для одной линии А бесконечно.