Далее, мы обнаружим, что, двигаясь с постоянной скоростью, они никогда не окажутся в иоле зрения друг друга. Однако на рисунке можно заметить, что лев и человек оказываются в камерах, обозначенных буквой А, одновременно и, следовательно, могут увидеть друг друга через открытые двери. То же происходит, когда они оказываются в камерах В, причем верхние буквы в обоих случаях показывают положение человека, а нижние – положение льва. В первом случае лев устремляется прямо к человеку, тогда как человек, кажется, пытается зайти ко льву с тыла. Второй случай несколько более подозрителен, ибо похоже, что они здесь удирают друг от друга!
152. Я показал на рисунке, каким образом слон может посетить каждое из намеченных мест за 17 ходов. Очевидно, что мы должны начать с одного углового квадрата и закончить в диагонально противоположном «Головоломку нельзя решить за меньшее число ходов.
153. Передвигайте шашки следующим образом: 2–3, 9–4, 10 – 7, 3–8, 4–2, 7–5, 8–6, 5 – 10, 6–9, 2–5, 1–6, 6–4, 5–3, 10 – 8, 4–7, 3–2, 8–1, 7 – 10. Теперь белые шашки поменялись местами с красными за 18 ходов при соблюдении заданных условий.
154. Играйте следующим образом, используя обозначения, основанные на нумерации клеток на рисунке А.
На рисунке Б показано положение после девятого хода. Слоны на клетках 1 и 20 еще не ходили, но 2 и 19 уже двигались вперед, а затем вернулись назад. В конце 1 и 19, 2 и 20, 3 и 17 и 4 и 18 поменяются местами. Обратите внимание на позицию после тринадцатого хода.
155. На приведенном рисунке показан второй вариант турне ферзя. Если вы прервете линию в точке J и уберете более короткий участок этой прямой, то получите искомый путь для любой клетки J.
Если вы прервете линию в J, то получите невозвратное решение, начинающееся из любой клетки J. А если вы прервете линию в G, то получите решение для любой клетки G. Ранее приведенное турне ферзя можно также прервать в трех различных местах, однако я воспользовался возможностью привести второе турне.
156. Рисунок говорит сам за себя. Все звезды вычеркиваются за 14 прямолинейных движений, причем путь начинается и заканчивается белой звездой.
157. Решение вы видите на рисунке. Числа показывают направления прямых в их правильном порядке.
Можно заметить, что седьмой курс заканчивается у буя с флажком, как и требовалось.
158. В данном случае мы выходим за границы квадрата. Кроме того, все наши движения производятся ходом ферзя. Существуют 3 или 4 решения задачи.
Здесь приводится одно из них.
Можно заметить, что конькобежец вычеркивает все звездочки за один непрерывный путь, состоящий из 14 прямолинейных участков и возвращающийся в исходную точку. Чтобы проследить этот путь, нужно всегда двигаться по прямой как можно дальше до поворота.
159. На рисунке показано, каким образом все звездочки можно вычеркнуть за 12 прямолинейных движений, начиная и заканчивая черной звездой.
160. Правильное решение головоломки показано на рисунке сплошной линией. За 5 ходов ферзь проходит наибольшее возможное для него при заданных условиях расстояние. Пунктирная линия на исходном рисунке показывает путь, который предлагает большинство читателей, однако он короче первого.
Допустим, что расстояние между центрами соседних клеток, расположенных на одной горизонтали или вертикали, равно 2 дюймам и что ферзь движется из центра исходной клетки в центр той клетки, где он останавливается; тогда в первом случае путь превосходит 67,9 дюйма, а во втором – не превышает 67,8 дюйма. Разница не велика, но достаточна для того, чтобы выделить более длинный путь. Все другие пути короче.