Также ученый заявил, что он построил бы телескоп по- другому, и даже сделал некоторые расчеты для этого. У Кеплера действительно было больше возможностей, чем у Галилея, чтобы разработать модель телескопа. Хотя Галилей абсолютно не понимал, почему телескоп увеличивает изображение, однако, используя секреты голландских мастеров и совершенствуя созданный ими прибор, он двигался путем проб и ошибок, не пользуясь никакой геометрической теорией оптических лучей, и в результате пришел к успеху.
Дискуссии о Луне сегодня кажутся нам наивными, но чтобы понять их важность, нужно оказаться в 1610 году. Кеплер стремился соперничать с Галилеем не при помощи телескопа, а используя картонку с отверстием и линзу, которая проецировала изображение Луны на расстояние 12 футов. Таким образом можно было разглядеть на лунной поверхности гораздо больше деталей, чем при изучении ее невооруженным глазом. До этого Кеплер верил, что темные участки представляли собой землю, а блестящие – море, но после работы Галилея он признал, что на самом деле все было ровно наоборот, поскольку телескоп показывал наличие образований, похожих на горы, в блестящих участках. Особенно хорошо это было видно во время лунных закатов и восходов. Галилей предполагал, что Луна не состоит из воды и суши.
Материя лунного шара не является водой и землей.
Галилео Галилей
Первая известная гелиоцентрическая модель принадлежит Аристарху Самосскому (310-230 годы до н.э.). Его концепция основывалась на измерениях, а не только на теоретических выкладках. Астроном знал соотношение расстояний Земля – Солнце и Земля – Луна. Наблюдая лунное затмение, он определил размер спутника и, таким образом, расстояние до него, а затем расстояние до Солнца и его размер. Определив, что Солнце гораздо больше Земли и Луны, ученый предложил ясную и точную гелиоцентрическую модель.
Стоит упомянуть и таких сторонников гелиоцентрической гипотезы в Средние века, как Ибн-Рушд (1126-1198 годы) и его ученик Ал-Битруджи (умер в 1204 году), а также Насир ад-Дин ат- Туси (1201-1274) из Мараги, Персия.
Ранее считалось, что орбиты – это окружности, заключенные в сферы, потому что господствовала аристотелевская идея о том, что круг – самая совершенная фигура. Поскольку в действительности орбиты не круглые, а Земля вращается вокруг Солнца, а не наоборот, геоцентрические модели должны были включать эпициклы и другие усложнения. Круг может быть простой правильной фигурой, но два круга – это уже нечто иное, они нарушают аристотелевские простоту и совершенство. Средневековое описание космоса было очень сложным, и эта сложность привела к тому, что позднее Вольтер вложил в уста Альфонса X фразу: «Если бы Бог захотел со мной посоветоваться о строении Вселенной, я бы подал ему несколько идей». Коперник поддерживал идею о совершенстве круга, из-за чего тоже должен был добавлять в свою модель эпициклы. Так же поступил и Тихо Браге. Кеплер отказался от круга, хотя и продолжал помещать Солнце в центр Вселенной. А Николай Кузанский и Джордано Бруно первыми высказали мысль, что ни Земля, ни Солнце не находятся в центре… потому что центра нет.
Нур Ад-Дин Ал-Битруджи стал первым астрономом после Птолемея, представившим альтернативную космическую модель. Для Ал-Битруджи движение планет объяснялось физическими причинами.
Кеплер заметил и уже знакомые сегодня лунные кратеры с их характерными круглыми краями. Его интерпретация была весьма оригинальной, хотя и шутливой. Кеплер предположил, что Луну населяли селениты. Они были крупнее и сильнее человека, так как должны были переносить дневную жару, которая у них длилась целый месяц. А поскольку сами они были большими, то и все вокруг тоже создавали большим.
Вот селениты и возвели эти огромные круглые стены как защиту от Солнца. Внутренняя часть кратеров использовалась под посевы. Сегодня-то мы знаем, что кратеры – это результат метеоритного дождя, но в те времена представить такое было сложно. Кеплер считал, что Луна состоит из пористого материала, похожего на пемзу, из-за чего ее плотность должна быть низкой. Это вполне соответствовало его теории, что вращение Земли продуцирует магнетическую силу, которая заставляет вращаться Луну. А поскольку скорость вращения обратно пропорциональна массе тела, а Луна вращается быстро, то это означает, что наш спутник имеет невысокую плотность.
Наличие лунного лимба Кеплер интерпретировал как доказательство существования атмосферы. Подтверждало эту догадку и заявление Мёстлина, что он наблюдал на Луне огромное черное облако, вероятно, несущее крупную бурю.
Комментарии Кеплера дальше от реальности, чем предположения Галилея, который в целом скептически относился к мистицизму своего немецкого коллеги. Однако оба они верно объяснили пепельный отсвет на поверхности Луны – это солнечный свет, отраженный от Земли, затем его отражение доходит до Луны, и наблюдатель на Земле видит его повторное отражение. Что касается красноватого цвета Луны во время затмений, то Кеплер считал, что он вызван атмосферным преломлением в земной атмосфере, а Галилей – что это разновидность зари, что-то вроде земных рассветов.
В своей книге Кеплер цитирует Аверроэса (Ибн-Рушда), который придерживался идей, близких к гелиоцентризму.
В своих объяснениях космоса Кеплер нередко ошибался. Стоит ли удивляться этому? Ведь ученый делал первые шаги в научном познании Вселенной. Он попытался объяснить природу неподвижных звезд и вызвал жаркие дебаты, касающиеся бесконечности космоса, которая сегодня носит название фотометрического парадокса (парадокса Ольберса) (см. следующий параграф).
Галилей обнаружил, что звезд, называемых неподвижными и наблюдаемых невооруженным глазом, гораздо меньше (примерно 6000), чем тех, которые можно увидеть при помощи телескопа (более 10 ООО). Этот факт снова поднимал вопрос о том, бесконечна ли Вселенная, как предполагали Бруно, Николай Кузанский и Гильберт, или же она конечна, как считали Коперник и Кеплер. Галилей не слишком афишировал свое мнение, ведь всего шесть лет назад Бруно за излишнее свободомыслие был сожжен на костре.
В связи с дифракцией оптический прибор не может показывать изображения с неограниченной точностью. Часто в изображении две близкие точки сливаются в пятна, и возможность их различить зависит от разрешающей способности прибора. Минимальное значение пятна, или дифракционный предел, рассчитывается по формуле:
R = 1,22 λ/D
где лямбда – это длина наблюдаемой волны, D – апертура оптического прибора. Разрешающая способность тем больше, чем меньше угол R. Человеческий глаз со зрачком диаметром 2 мм может наблюдать волны длиной 500 нм и имеет разрешающую способность в 1'. Оптический телескоп диаметром 30 см имеет разрешающую способность примерно 0,5", а профессиональный, диаметром 4 м, 0,01" . Однако разрешение не может расти неограниченно из-за атмосферной турбулентности, которая продуцирует изображения размером примерно 1" в зависимости от места и времени наблюдения. Турбулентность вызывает изменение индекса рефракции, из-за чего изображение звезды расширяется, а его контрастность падает. Для предотвращения подобного эффекта все большие телескопы должны использовать специальные технологии. Так, в оптическом телескопе GRANTECAN (Большой канарский телескоп на острове Ла Пальма) диаметром 10,4 м и с разрешающей способностью 2 х 10-4 минуты дуги применяется адаптивная оптика, в которой подвижное зеркало принимает форму, компенсирующую деформацию изображения. Линза одного из телескопов, построенных Галилеем, имела 33 мм в диаметре, поэтому его разрешающая способность была в 16 раз выше, чем у человеческого глаза, и размер звезды в нем уменьшался, а размер Луны, напротив,увеличивался.