Выбрать главу

Заключая свое предисловие, я хотел бы напомнить мудрые слова шекспировского Гамлета: «И в небе, и в земле сокрыто больше, чем снится вашей мудрости, Горацио». Не таков ли окончательный урок кибернетики?

Г.Н. Поваров

Москва,

март 1967 г. [c.28]

Предисловие ко второму изданию

Когда тринадцать лет тому назад я готовил первое издание «Кибернетики», работу мою затрудняли некоторые серьезные помехи, следствием чего были многочисленные опечатки наряду с отдельными ошибками в содержании. Ныне, думается, настало время пересмотреть кибернетику не только как программу для будущего, но и как существующую науку. Поэтому я воспользовался настоящей возможностью, чтобы внести необходимые исправления для моих читателей и одновременно дополнить книгу изложением современного состояния предмета и новых близких идей, появившихся со времени первого издания.

Если какая-либо новая отрасль науки является действительно жизненной, то центр интереса в ней с годами неизбежно должен перемещаться. Когда я писал «Кибернетику» в первый раз, главное препятствие для меня заключалось в том, что понятия статистической теории информации и управления были тогда новы и даже в какой-то мере противоречили установившимся взглядам. Теперь они стали обычным орудием инженеров связи и разработчиков автоматического оборудования, и главная опасность, мне угрожающая, состоит в том, что книга может показаться банальной. Значение обратной связи в техническом проектировании и в биологии твердо установлено. Значение информации и методика ее измерения и передачи составляют целый предмет изучения для инженера, физиолога, психолога и социолога. Автоматы, о которых в первом издании книги делались лишь предсказания, заняли подобающее [c.29] им место, и связанные с этим социальные опасности, против которых я предостерегал не только в данной книге, но и в небольшой популярной работе «Человеческое использование человеческих существ»[79], видны теперь отовсюду.

А потому кибернетику надлежит спешить к новым областям и обратить побольше внимания на идеи, возникшие уже в последнее десятилетие. Простые линейные обратные связи, изучение которых сыграло такую большую роль в пробуждении интереса ученых к кибернетическим исследованиям, оказываются совсем не такими простыми и линейными, как представлялось сначала. В самом деле, в ранние дни теории электрических цепей ее математические ресурсы не шли дальше линейного комбинирования сопротивлений, емкостей и индуктивностей. Это означало, что весь предмет можно было достаточно верно описать в терминах гармонического анализа передаваемых сообщений и величин импедансов, адмиттансов и отношений напряжений в цепях, через которые проходят эти сообщения.

Задолго до выхода в свет «Кибернетики» стало ясно, что изучение нелинейных цепей (таких, какие мы находим в различных усилителях, ограничителях напряжения, выпрямителях и т. д.) не умещается в эти рамки. Тем не менее за отсутствием лучшей методики предпринимались многочисленные попытки распространить линейные понятия прежней электротехники далеко за те границы, в которых они допускали естественное представление новых элементов.

Когда около 1920 г. я пришел в МТИ, обычный способ подхода к нелинейным устройствам состоял в том, что искалось расширенное понятие импеданса, которое охватывало бы как линейные, так и нелинейные системы. В результате нелинейная электротехника пришла в состояние, подобное состоянию птолемеевой системы астрономии в последний период ее существования, когда нагромождали эпицикл на эпицикл, поправку на поправку, пока все это латаное сооружение не рухнуло под собственной тяжестью. [c.30]

Как из крушения перенапряжений птолемеевой системы возникла коперникова система с ее простым и естественным гелиоцентрическим описанием движений небесных тел, заменившим сложную и запутанную картину геоцентрической птолемеевой системы, так и для изучения нелинейных устройств и систем, электрических или механических, естественных или искусственных была необходима совершенно новая отправная точка. Я попытался нащупать новый подход в своей книге «Нелинейные задачи в теории случайных процессов»[80].

Оказывается, что с переходом к нелинейным явлениям тригонометрический анализ теряет ту ведущую роль, которая ему принадлежит в изучении линейных явлений. Это имеет четкое математическое объяснение. Процессы в электрических цепях, как и многие другие физические явления, характеризуются инвариантностью при сдвиге начала отсчета во времени. Физический опыт, начатый в полдень и достигший определенного состояния к 2 часам дня, должен достигнуть такого же состояния к 2.15, если мы начнем его в 12.15. Таким образом, физические законы говорят об инвариантах группы сдвигов во времени.

вернуться

79

Wiener N. The Human Use of Human Beings: Cybernetics and Society. — Boston Houghton Miftlin Co., 1950 (русский перевод: Винер Н. Кибернетика и общество. — М.: ИЛ, 1958. — Ред.).

вернуться

80

Wiener N. Nonlinear Problems in Random Theory. — New York: The Technology Press of М.I.T. and John Wiley & Sons, 1958 (русский перевод: Винер Н. Нелинейные задачи в теории случайных процессов. — М.: ИЛ, 1961. — Ред.).