Выбрать главу

Тригонометрические функции sin nt и cos nt обнаруживают важные инвариантные свойства относительно той же группы сдвигов. Функция общего вида eit перейдет в функцию

eiω(t+τ) = eiωτ eiωt

того же вида при сдвиге, который получается прибавлением τ к t. Как следствие,

a cos n (t + τ) + b sin n (t + τ) = (a cos nτ + b sin nτ) cos nt + (b cos nτ — a sin nτ) sin nt =

= a1 cos nt + b1 sin nt.

Иными словами, семейства функций

Аеiωt и A cos ωt + B sin ωt

инвариантны при сдвиге. [c.31]

Но существуют и другие семейства функции, инвариантные при сдвигах. Если рассматривать так называемое случайное блуждание, когда перемещение частицы за любой промежуток времени имеет распределение, зависящее от длительности этого промежутка и не зависящее от событий, происшедших до его начала, то ансамбль случайных блужданий также перейдет в себя при временном сдвиге.

Иными словами, инвариантность при сдвигах — это свойство тригонометрических кривых, которым обладают также другие множества функций.

В дополнение к этой инвариантности, тригонометрические функции характеризуются свойством

Аеiωt + Веiωt = (А + В)еiωt

благодаря которому они образуют чрезвычайное простое линейное множество. Легко заметить, что это свойство связано с линейностью, т. е. мы можем свести все колебания данной частоты к линейной комбинации двух колебаний. Именно это специфическое свойство обусловливает роль гармонического анализа при изучении линейных свойств электрических цепей. Функции

еiωt

суть характеры группы переносов и дают нам линейное представление этой группы[81].

Но когда мы обращаемся к другим комбинациям функций, нежели сложение с постоянными коэффициентами, например к перемножению функций, то простые тригонометрические функции уже не обнаруживают этого элементарного группового свойства. С другой стороны, случайные функции, такие, как при случайном блуждании, обладают определенными свойствами, весьма полезными при рассмотрении их нелинейных комбинаций.

Я не хотел бы входить в подробности, математически довольно сложные и уже разобранные в моей книге «Нелинейные задачи в теории случайных процессов». Материал этой книги уже применялся не раз при рассмотрении специфических нелинейных задач, но для выполнения изложенной там программы остается еще многое сделать. Практически дело сводится к тому, что [c.32] в качестве удобного стандартного сигнала на входе выступает уже не набор тригонометрических функций, а сигнал типа броунова движения. В случае электрических цепей такая «броунова» функция физически может быть получена дробовым эффектом. Дробовой эффект есть явление нерегулярности электрических токов, возникающее вследствие того, что токи представляют собой не непрерывный поток электричества, а последовательность неделимых и одинаковых электронов. Поэтому электрические токи подвержены статистическим колебаниям, которые сами носят довольно ровный характер и могут быть усилены настолько, что составят заметный случайный шум.

Как я покажу в гл. IX, теория случайного шума может служить на практике не только для анализа электрических цепей и других нелинейных процессов, но и для их синтеза[82]. С этой целью выходной сигнал нелинейного устройства со случайным входом приводится к ряду некоторых ортонормальных функций, тесно связанных с многочленами Эрмита. Задача анализа нелинейной цепи состоит в определении коэффициентов этих многочленов усреднением по параметрам входного сигнала.

Указанный процесс описывается довольно просто. Кроме черного ящика, изображающего еще не проанализированную нелинейную систему, у меня есть некоторые тела известной структуры, которые я буду называть белыми ящиками и которые изображают разные члены искомого разложения[83]. Я ввожу один и тот же случайный [c.33] шум в черный ящик и в данный белый ящик. Коэффициент белого ящика в разложении черного ящика равен среднему произведению их выходных сигналов. Это среднее надо брать по всему ансамблю входных сигналов, создаваемых дробовым эффектом, но существует теорема, которая во всех случаях, кроме множества меры 0, позволяет заменять это среднее средним по времени. Таким образом, мы нуждаемся в перемножающем устройстве, которое бы находило произведение выходов черного и белого ящиков, и в усредняющем устройстве, которое может быть основано на том, что разность потенциалов конденсатора пропорциональна его заряду и, следовательно, интегралу по времени от тока, текущего через конденсатор.

вернуться

81

О группах и характерах групп см. ниже гл. IIПрим. ред.

вернуться

82

Термин «нелинейная система» употребляется мною не для исключения линейных систем, а для того, чтобы показать, что речь идет о более широкой категории. Анализ нелинейных систем при помощи случайного шума применим также к линейным системам, и его применяют на самом деле.

вернуться

83

Термины «черный ящик» и «белый ящик» — удобные и образные выражения с не очень точно установленным значением. Под черным ящиком я подразумеваю какое-либо устройство (например, четырехполюсник с двумя входными и двумя выходными полюсами), которое выполняет определенную операцию над настоящим и прошлым входного потенциала, но для которого мы не обязательно. располагаем информацией о структуре, обеспечивающей выполнение этой операции. С другой стороны, белый ящик есть аналогичная цепь, в которой для обеспечения заданной зависимости между входом и выходом мы связали входной и выходной потенциалы согласно определенному структурному плану.