Выбрать главу

Я сам в прошлом ученик Рассела и многим обязан его влиянию. Д-р Шеннон взял как тему своей докторской диссертации в Массачусетсском технологическом институте применение методов классической булевой алгебры классов к изучению переключательных систем в электротехнике[100]. Тьюринг был, пожалуй, первым среди ученых, исследовавших логические возможности машин с помощью мысленных экспериментов. Во время войны он работал для английского правительства в области электроники. В настоящее время он возглавляет программу по созданию вычислительных машин современного образца, принятую Национальной физической лабораторией в Теддингтоне.

Другим молодым ученым, перешедшим из математической логики в кибернетику, был Уолтер Питтс. Он был учеником Карнапа в Чикаго и был связан с проф. Рашевским и его школой биофизиков. Заметим попутно, что эта последняя группа сделала очень много для того, чтобы направить внимание ученых-математиков на возможности биологических наук. Правда, некоторым из нас кажется, что она находится под слишком большим влиянием задач об энергии и потенциалах и методов классической физики, чтобы наилучшим образом решать задачи по изучению систем, подобных нервной системе, которые весьма далеки от энергетической замкнутости. [c.59]

Г-н Питтс весьма удачно попал под влияние Мак-Каллоха; они вместе начали работать над проблемами, связанными с соединением нервных волокон синапсами в системы, обладающие заданными общими свойствами. Независимо от Шеннона они использовали аппарат математической логики для решения проблем, являющихся прежде всего переключательными проблемами. Мак-Каллох и Питтс ввели принципы, остававшиеся в тени в ранней работе Шеннона, хотя и вытекающие, несомненно, из идей Тьюринга: использование времени как параметра, рассмотрение сетей, содержащих циклы, и рассмотрение синаптических и других задержек[101].

Летом 1943 г. я встретил д-ра Дж. Леттвина из Бостонской городской больницы, весьма интересовавшегося вопросами, связанными с нервными механизмами. Он был близким другом г-на Питтса и познакомил меня с его работой[102]. Он убедил Питтса приехать в Бостон и встретиться с д-ром Розенблютом и со мной. Мы с радостью пригласили его в нашу группу. Г-н Питтс перешел в Массачусетсский технологический институт осенью 1943 г., чтобы работать вместе со мной и чтобы углубить свою математическую подготовку для исследований в этой науке — кибернетике, к тому времени уже родившейся, но еще не окрещенной.

Г-н Питтс был тогда основательно знаком с математической логикой и нейрофизиологией, но не имел случая сколько-нибудь близко соприкасаться с техникой. В частности, он не был знаком с работой д-ра Шеннона и недостаточно ясно представлял себе возможности электроники. Он очень заинтересовался, когда я показал ему образцы современных вакуумных ламп и объяснил, что они являются идеальным средством для реализации в металле эквивалентов рассматриваемых им нейронных сетей и систем. С этого времени нам стало [c.60] ясно, что сверхбыстрая вычислительная машина, поскольку вся она строится на последовательном соединении переключательных устройств, является идеальной моделью для решения задач, возникающих при изучении нервной системы. Возбуждение нейронов по принципу «все или ничего» в точности подобно однократному выбору, производимому при определении разряда двоичного числа; а двоичная система счисления уже признавалась не одним из нас за наиболее удовлетворительную основу для проектирования вычислительных машин. Синапс есть не что иное, как механизм, определяющий, будет ли некоторая комбинация выходных сигналов от данных предыдущих элементов служить подходящим стимулом для возбуждения следующего элемента или нет; тем самым синапс в точности подобен устройствам вычислительной машины. Наконец, проблема объяснения природы и разновидностей памяти у животных находит параллель в задаче создания искусственных органов памяти для машин.

Тем временем оказалось, что создание вычислительных машин имеет гораздо более важное значение для военных целей, чем предполагал ранее д-р Буш. Строительство новых машин развернулось в нескольких центрах, и притом в направлении, которое не очень отличалось от указанного в моем первом докладе. Гарвардский университет, испытательный полигон в Абердине и Пенсильванский университет уже построили вычислительные машины, а Институт высших исследований в Принстоне[103] и Массачусетсский технологический институт должны были к этому вскоре приступить. В программе строительства вычислительных машин наблюдался постепенный переход от механических систем к электрическим, от десятичной системы счисления к двоичной, от механического реле к электрическому, от ручного управления операциями к автоматическому управлению. Короче говоря, каждая новая машина все более и более походила на образец, описанный в том докладе, [c.61] который я в свое время направил д-ру Бушу. Множество народа жадно интересовалось этими вопросами; у нас была возможность передавать свои идеи коллегам, в частности д-ру Эйкену из Гарвардского университета, д-ру фон Нейману из Института высших исследований и д-ру Голдстайну, работавшему над машинами ЭНИАК[104] и ЭДВАК[105] в Пенсильванском университете. Везде нас внимательно выслушивали, и скоро словарь инженеров стал пестреть выражениями, употребляемыми нейрофизиологами и психологами.

вернуться

100

См.: Шеннон К.Э. Указ. соч. Булева алгебра классов — логическое исчисление, названное по имени известного английского математика Джорджа Буля (1815—1864), который считается основателем математической логики. — Прим. ред.

вернуться

101

Turing A.M. On Computable Numbers, with an Application to the Entscheidungsproblem. // Proc. London Math. Soc. — Ser. 2. — 1936. — Vol. 42. — P. 230—265.

вернуться

102

McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. // Bull. Math. Biophys. — 1943. — Vol. 5. — P. 115—133 (русский перевод: Мак-Каллох У.С., Питтс В. Логическое исчисление идей, относящихся к нервной активности. // Автоматы. / Пер. под ред. Ляпунова А.А. — М.: ИЛ, 1956. С. 362—384. — Ред.).

вернуться

103

Институт высших исследований (Institute for Advanced Study) — известный научно-исследовательский центр в гор. Принстоне, штат Нью-Джерси, в котором работали многие выдающиеся ученые, включая А. Эйнштейна. Основан в 1933 г. реформатором американской системы просвещения А. Флекснером. Частное заведение, частично связанное с Принстонским университетом. — Прим. ред.

вернуться

104

ЭНИАК (ENIAC — Electronic Numerical Integrator and Automatic Calculator, т. е. «Электронный численный интегратор и автоматический вычислитель») — первая американская электронная вычислительная машина; строилась во время воины Пенсильванским университетом в Филадельфии для Управления вооружения армии США. Впервые публично продемонстрирована в феврале 1946 г. и затем использовалась в баллистической лаборатории испытательного полигона в Абердине, Мэриленд США. — Прим. ред.

вернуться

105

ЭДВАК (EDVAC — Electronic Discrete Variable Automatic Computer, т. е. «Электронная автоматическая вычислительная машина с дискретными переменными») — вторая электронная вычислительная машина, построенная в Пенсильванском университете; предназначалась для баллистической лаборатории испытательного полигона в Абердине. — Прим. ред.