Выбрать главу

Дуга меридиана АВ = δ изображает на рис. 1.1 экваториальную широту звезды А, называемую также склонением звезды А. Если пренебречь колебаниями эклиптики, то склонения звезд, расположенных в северном полушарии, с течением времени медленно уменьшаются, из-за смещения точки весеннего равноденствия Q. При этом склонения звезд, расположенных в южном полушарии, медленно увеличиваются.

При суточном движении Земли склонения звезд не меняются, а прямые восхождения равномерно изменяются, со скоростью вращения Земли.

Другой часто используемой системой, особенно в древних звездных каталогах, является эклиптикальная, или эклиптическая система координат.

Рассмотрим небесный меридиан, проходящий через полюс эклиптики Р и через звезду А, рис. 1.1. Он пересекает плоскость эклиптики в точке D. Дуга QD изображает на рис. 1.1 эклиптикальную или эклиптическую долготу l, а дуга AD — эклиптикальную широту b. С течением времени в силу прецессии дуга QD увеличивается, примерно на 1 градус за 70 лет. Следовательно, эклиптикальные долготы со временем равномерно возрастают.

Если пренебречь колебаниями эклиптики, то в первом приближении можно считать, что эклиптикальные широты b не меняются со временем. Именно это обстоятельство сделало эклиптикальные координаты популярными среди средневековых астрономов. Преимущество эклиптикальных координат по сравнению с экваториальными заключается в том, что вследствие прецессии величина l равномерно увеличивается, а величина b постоянна. Изменения же экваториальных координат вследствие прецессии происходят по существенно более сложным формулам, учитывающим ортогональный поворот эклиптики, совмещающий ее с экватором.

Именно поэтому средневековые астрономы стремились составлять свои каталоги в эклиптикальных координатах. Хотя из наблюдений легче найти экваториальные координаты, поскольку их нахождение не требует определения плоскости эклиптики. Положение эклиптики связано с движением Земли вокруг Солнца и требует для своего определения нетривиальных методов, влекущих за собой дополнительные систематические ошибки в координатах всех звезд. Открытие того факта, что эклиптика колеблется со временем, привело к тому, что в звездных каталогах стали приводить не эклиптикальные, а экваториальные координаты звезд. Гак это делается и сегодня. «Преимущество» эклиптикальных координат исчезло.

3. Способы измерения экваториальных и эклиптикальных координат

Вкратце остановимся на конкретных способах измерения экваториальных и эклиптикальных координат. Мы опишем простую геометрическую идею, лежащую в основе таких измерительных приборов, как квадрант, секстант, меридианный круг и др.

Пусть наблюдатель Н находится на поверхности Земли на широте φ. См. рис. 1.3 и рис. 1.4. Достаточно легко определить прямую HN', направленную на северный полюс мира и параллельную ON. Далее, надо определить меридиан, проходящий через точку Н, и установить на поверхности Земли вертикальную стенку, направленную вдоль этого меридиана, рис. 1.3 и рис. 1.4. Отмечая на ней направление HN' на полюс мира, мы можем отметить также линию экватора HK', параллельную ОК, отложив угол π/2 от направления HN'. Прямой угол N'HK' делится на градусы. В результате получается угломерный астрономический прибор: четверть разделенного круга, расположенная в вертикальной плоскости (по отвесу). Основа этого прибора заложена в меридианных инструментах. С его помощью можно измерять склонения звезд, то есть их экваториальные широты, а также отмечать моменты прохождения звезд через меридиан, через так называемый вертикал.

Рис. 1.3. Принцип измерения координат звезд.

Рис. 1.4. Измерение координат звезд при их прохождении через меридиан.

Из серии независимых наблюдений можно с высокой точностью определить плоскость экватора на данной широте. Поэтому склонения можно измерять достаточно точно. В то же время, как видно из описанной элементарной небесной механики, измерение долгот требует фиксации моментов прохождения звезд через меридиан. Для этого нужны либо достаточно точные часы, либо дополнительный прибор, позволяющий быстро измерить расстояние по долготе между интересующей нас звездой и фиксированным меридианом. В любом случае измерение долгот является существенно более тонкой операцией. Поэтому следует ожидать, что средневековые астрономы должны были определять прямые восхождения более грубо, чем склонения.