Выбрать главу

Предположим, что длина ключевого слова действительно составляет 5 букв; тогда следующий этап будет заключаться в том, чтобы найти эти буквы. Пока обозначим ключевое слово в виде L1-L2-L3-L4-L5, где L1будет первой буквой ключевого слова, L2 — второй, и так далее. Тогда процесс шифрования начнется с зашифровывания первой буквы открытого текста в соответствии с первой буквой ключевого слова Буква определяет строку квадрата Виженера и, тем самым, задает одноалфавитный шифр замены для первой буквы открытого текста. Однако когда наступает время для зашифровывания второй буквы открытого текста, криптограф должен использовать L2, чтобы определить другую строку квадрата Виженера, задавая тем самым уже иной одноалфавитный шифр замены. Третья буква открытого текста будет зашифровываться в соответствии с L3, четвертая — в соответствии с L4, а пятая — в соответствии с L5. Каждая буква ключевого слова задает для шифрования свой отличающийся шифралфавит. Но затем шестая буква открытого текста будет опять зашифровываться в соответствии с L1, седьмая буква — в соответствии с L2, и далее цикл повторяется. Другими словами, в нашем случае многоалфавитный шифр состоит из пяти одноалфавитных шифров, причем каждый одноалфавитный шифр отвечает за шифрование 1/5 части всего сообщения. Но самое главное состоит в том, что нам уже известно, как проводить криптоанализ одноалфавитных шифров.

Таблица 8 Повторяющиеся последовательности и интервалы между ними в шифртексте.

Поступим следующим образом. Мы знаем, что одна из строк квадрата Виженера, определяемая буквой задает шифралфавит, которым зашифрованы 1-я, 6-я, 11-я, 16-я… буквы сообщения. Поэтому если возьмем 1-ю, 6-ю, 11-ю, 16-ю… буквы шифртекста, то мы сможем применить добрый, старый частотный анализ для определения данного шифралфавита. На рисунке 14 показано частотное распределение букв, которые стоят на 1-м, 6-м, 11-м, 16-м… местах шифртекста; это буквы W, I, R, Е… Здесь следует напомнить, что каждый шифралфавит в квадрате Виженера — это просто обычный алфавит, сдвинутый на 1… 26 позиций. Поэтому частотное распределение на рисунке 14 должно иметь те же особенности, что и частотное распределение стандартного алфавита, за исключением того, что оно будет сдвинуто на некоторое расстояние. Сравнивая распределение L1 со стандартным распределением, можно определить величину сдвига. На рисунке 15 показано стандартное частотное распределение для отрывка английского открытого текста.

В стандартном распределении имеются пики, плато и впадины, и, чтобы сравнить его с распределением шифра L1 поищем наиболее заметные особенности и их комбинации. Так, весьма характерную особенность в стандартном распределении (рис. 15) составляют три пика у R-S-Т и длинная ложбина справа от них, которая захватывает шесть букв от U до Z включительно. В распределении (рис. 14) есть только один похожий участок с тремя пиками у V-W-Х и последующей впадиной, простирающейся вдоль шести букв от Y до D. А это означает, что все буквы, зашифрованные в соответствии с L1 были сдвинуты на четыре позиции, и L1 определяет шифралфавит, который начинается с Е, F, G, Н…, то есть первая буква ключевого слова, L1 это, по всей видимости, Е. Данное предположение может быть проверено путем сдвига распределения на четыре буквы назад и сравнения его со стандартным распределением. На рисунке 16 даны для сравнения оба распределения. Совпадение между основными пиками очень хорошее, так что нет никаких сомнений, что ключевое слово действительно начинается с буквы Е.

Рис. 14 Частотное распределение букв в зашифрованном с помощью шифралфавита L1 тексте (число появлений букв).

Рис. 15 Стандартное частотное распределение букв (число появлений букв на основе отрывка открытого текста, содержащего то же самое количество букв, что и в шифртексте).