Полярности А, В, С,….М могут взаимодействовать между собой.
Комментарий.
Эта аксиома в линейном уме также не оговаривается как аксиома, а берётся как само собой разумеющееся. Например, «друзья моих врагов — мои враги».
Аксиома третья.Одной или нескольким взаимодействующим полярностям можно поставить в соответствие одну или несколько взаимодействующих полярностей.
Комментарий. Эта аксиома открывает следование и процесс. Кстати, в современной науке, логике, концепциях и обыденных высказываниях это так широко распространено, что без следствия не было бы ни одного изречения, теоремы, теории, концепции, открытия.
Аксиома четвёртая.Полярности можно группировать.
Комментарий.
В двухполярном уме цивилизации Запада это не оговаривается, так как существует всего две поляризованных группы объектов. Например, кроме «положительного» и «отрицательного» поляризованных объектов не бывает. Количества, принадлежащие той или иной полярности, саму полярность не меняют. Например, +5 или +А; — 5 или — А.
Аксиома пятая.Соответствие не нарушится, если один и тот же поляризованный объект войдёт во взаимодействие с исходным и поставленным ему в соответствие комплексом полярностей.
Комментарий.
Это правило широко распространено в современных исчислениях, логиках и высказываниях. Например, каждый из математики знает правило: «если к левой и правой частям равенства „прибавить“ или „отнять“, одно и то же число, то равенство от этого не нарушится». Или, к примеру, высказывание «друзья моих врагов — мои враги» не нарушится в полярном смысле, если добавить «успехи друзей моих врагов мне не в радость».
Аксиома шестая.Объектами взаимоотношений могут быть локи.
Комментарий.
На первый взгляд нужды в этой аксиоме нет, так как она дублирует аксиому 1. Однако опыт показал, что нужна осторожность в обобщениях.
Действительно, если брать такие объекты, когда объект лишен права взаимодействовать сам с собой (Х)*(Х), то систему отношений могут составить изоморфные системы или объекты. Правило «сопоставления» на тождественность, при этом, теряет силу. Например, из (А)*(В) = 0 и (А)*(С) = 0 не следует, что В? С. Это часто встречается в суперпозиционных и комплексных пространствах.
ЕдиницаЭтот термин взят из математики. «Единицей» будет такой объект, который не меняется при взаимодействии с самим собой. В то же время, единица не взаимодействует с другими объектами. Примером единицы во взаимодейстии «сложение» можно взять ноль. Примером в мышлении можно взять «абсолют», так, что «абсолют абсолюта есть абсолют».
НольЭтот термин заимствован из математики, где нулём называют такой элемент 0 группы, что 0 + 0 = 0, а также А + 0 = А, В + 0 = В,…, Х + 0 = Х. К нулю привязывают так же свойство такое, что есть два обратных элемента, которые, взаимодействуя, дают результатом ноль А + В = 0. Например, в группах сложения +3–3 = 0, а — а = 0. Однако мы видели случай в § 2, когда, например, 5 + 5 = 0 или а + а = 0.
Теорема 2.
Каждая лока имеет ноль.
Доказательство.
1. Если, согласно аксиоме 2 введём во взаимодействие все объекты локи, то результатом может быть только объект этой локи. Так для А + В +…+ М, согласно аксиоме 3, ставим в соответствие К, где К — объект этой же группы полярных объектов.
2. Так как объект К содержится в приведённое совокупности, то полученное выражение можно переписать (А + В +…+ М) + К = К, где совокупность (А + В +…+ М) уже не содержит объект К.
3. Найдётся такое взаимоотношение, когда совокупности (А + В +…+ М) будет соответствовать некоторый объект Е. Тогда равносильно можно записать Е + К = К.
4. Высказывание Е + К = К определяет элемент Е как ноль.
5. Найдётся также некоторая пара взаимодействующих объектов Х + Y для которых в соответствие станет объект Е.
6. Наконец, рассуждение подобное рассуждению пункта 2 можно повторить с любым другим объектом М, то есть (А + В +….+Х) +М = М, где (А + В + …+ Х) не содержит М.
7. Точно так же совокупности (А + В +….+Х) взаимодействующих объектов можно поставить в соответствие некоторый объект Н. Тогда Н + М = М.
8. По аксиоме 1 получается, что объект Е п.4 и объект Н п. 7 это один и тот же объект.
9. Такие же рассуждения проводим поочерёдно для каждого элемента всей совокупности А, В,…,Х полярных объектов.
10. Отсюда получается, что в совокупности объектов есть такой объект Е, когда А + Е = А, В + Е = В, …, Х + Е = Х.
11. Частным случаем при парном взаимодействии объектов найдётся случай, когда Х + Х = Е, а так же А + В = Е.
12. Но так как Х + Е = Х а так же Y + Е = Y, то получим высказывание (Х +Е) + (Y + E) = Е. Откуда Е + Е = Е.