Двухполярное пространство «шире», чем действительные числа. Более того, законы отношений в таком пространстве доказываются на базе аксиом. Система аксиом взята так, что обычно проходит в современном мышлении как «само собой», то есть математики это не выделяют в предлагаемые ими аксиомы. Аксиомы же математиков ДОКАЗЫВАЮТСЯ.
Двухполярность
Плоскостная поляризация
В этой локе только две полярности А и В. Третьего не дано. Отношение в такой локе будет А + В = А или В. Если А + В = А, то появляется альтернативная лока А + В = В. Никаких привычных переносов через знак равенства здесь нет. Если А + В = А, то В выполняет роль «нулевого» объекта, то есть В? 0.
Теорема 1.В двухполярном пространстве «плоских» локальностей законы отношений между полярностями будут:
а) А + В = А, в) 2nА = В, с) В + В = В, d) (2n — 1)А = А, где n — число.
Доказательство.
1. Согласно аксиомам 2 и 3 для А + В в соответствие выбираем А, то есть А + В = А.
2. Тогда А + А = В, так как иначе А? В. В + В = В либо А. Если В + В = А, то А? В.
3. Остаётся В + В = В. Это можно обозначить как 0 + 0 = 0.
4. Если А + А = В, то А + А + А = А, так как А + В = А.
5. Соответственно А + А + А + А = В.
6. По индукции получим для нечётного числа А + А + …+ А = А. Для чётного числа А + А + …+ А = В.
Иначе, можно записать А +А = 0, А + А + А = А, 0 + 0 = 0. В общем 2nА = 0, (2n — 1)А = А. n0 = 0. Такая лока управляет количеством. Например, если 5А + 7А = 12А, то есть 5А + 7А = 0. 6А + 9А = А.
Пример 1.
А + А + А = А будет «Ты это другое твоего друга».
Примечание.
Альтернативность А + В = В даёт формально те же самые законы отношений, но, с позиций овеществления, альтернативные локи, где роль 0 занимает либо А, либо В не безразлично. Альтернативные локи взаимно уничтожают друг друга тем, что при их объединении выполнится А? В.
Объёмная поляризация
1. Согласно аксиомам 1 обозначим полярные объекты А и В. Третьего не дано.
2. Согласно аксиомам 2 и 3 эти объекты будут взаимодействовать с постановкой в соответствие некоторого объекта:
а) (А)*(В) = (А), или (В) так как третьего не дано;
в) (А)*(А) = (А), или (В);
с) (В)*(В) = (А), или (В).
Теорема 7.Если в двухполярной локе при взаимодействии объектов А и В результатом будет А, то (А)*(А) = (В), а так же (В)*(В) = (В).
Доказательство.
1. По условию (А)*(В) = А. Тогда (А)*(А) не может дать в результате А, иначе мы придём к противоречию А? В. Поэтому (А)*(А) = В. Здесь? знак тождества.
2. В свою очередь (В)*(В) не может дать результатом В, иначе, если (В)*(В) = А, то при учёте условия будет А? В. Это противоречит аксиоме 1.
3. Имеем непротиворечивыми высказывания:
а) (А)*(В) = А;
б) (А)*(А) = В;
в) (В)*(В) = В.
Пример 1.
Аналогом этому являются законы отношений в алгебре действительных чисел. Если В? (+), а также А? (?), то по пункту 3 будет:
а) (+)*(?) = (?); б) (?)*(?) = (+); в) (+)*(+*) = (+).
Кстати, случай б) выделяется в математике как «двойные числа». Здесь кроется та слепота, когда количества и поныне не различают от полярностей, то есть качеств.
Пример 2.
Соответствие этому мы найдём в линейном мышлении. Если А это поляризация отрицательного «зло», «враг», «несчастье», «болезнь» и т. п., а так же В имеет положительную поляризацию «добро», «друг», «счастье», «здоровье» и т. п., то согласно пункта 3 будет например:
а) «болезнь друзей это плохо» или «зло в среде друзей это плохо» и т. п.;
б) «болезнь врагов это хорошо» или «зло в стане врагов это хорошо» и т. п.;
в) «здоровье друзей это хорошо» и т. п.
Пример 3.
Если взять А? «отрицанию»; В? «утверждению», то «отрицание отрицания есть утверждения» (Закон логики).
Пример 4.
Единица здесь кроме роли — остановки процесса мышления — играет роль «нейтрального» объекта. Например, из (А)*(0) = А будет, к примеру «человек в бесконечном Космосе» = «человек».
Теорема 8.Двухполярная лока имеет да «зеркальных» вида.
Доказательство.
1. В предыдущем условии (А)*(В) = А взято произвольно. Вполне вероятно будет (А)*(В) = В.
2. В свою очередь по этому условию (А)*(А) не может дать результатом В, иначе, А? В. Следовательно, (А)*(А) = А, так как третьего не дано.
3. Остаётся (В)*(В), которое не может быть равноценным В, иначе А? В. Значит (В)*(В) = А.
4. Имеем непротиворечивыми в системе и «зеркальные» по отношению к пункту 3 теоремы 1 высказывания:
а) (А)*(В) = В;
б) (А)*(А) = А;
в) (В)*(В) = А.
Примечание: В математике системы отношений п.3 теоремы 1 и п.4 теоремы 2 называют изоморфными и сбрасывают на тождество. Однако, как вы увидите на примере 4, система 4 теоремы 2 имеет жизненное значение.