Пример 10.
В пример можно взять «комплексные числа» из алгебры. Заменим символы А?? В?? С??? 0? +. Согласно законам локи 4 будем иметь (?)*(?) =? (??)*(??) =? (?)*(??) = +, (?)*(?) = +.. Однако об алгебре можно говорить лишь тогда, когда появятся взаимодействия между локами линейной и объёмной поляризаций.
Алгоритмическое нахождение законов отношения
Для простоты используется янтра. Обозначим полярности А, В, С, 0.
Янтра четырёхполярного пространства
Янтра локи 4
1. A B C
2. B 0 B
3. C B A
4. 0 0 0
По «арифметическим» правилам (А)*(А) = В, то есть 1 + 1 = 2. Возьмём, к примеру, (В)*(С). Здесь В занимает вторую, а С третью строку. Значит, 2 + 3 = 5. Пятым будет А (если строки продолжать). Можно взять первую строку там, где С стоит на первом месте в столбце, В — на втором. Значит, 1 + 2 = 3, то есть (В)*(С) = А. Теперь берём произвольное взаимодействие (А)*(В)*(С)*(А)*(В). Применяя правило янтр, получим 1 + 2 + 3 + 1 + 2 = 9. Девятым объектом в продолжение столбца будет А. Следовательно, (А)*(В)*(С)*(А)*(В) = А. Это же можно было выполнить поэтапно шаг за шагом. (А)*(В) = С, по четвёртому столбцу (С)*(С) = В, (В)*(А) = С, наконец, (С)*(В) = А. Янтры удобны тем, что можно, двигаясь по столбцам, найти просто любое взаимодействие. Например, для (В)*(С)*(В) будет по четвёртому столбцу (В)*(С) = А и далее по второму столбцу (А)*(В) = С. Итак, (В)*(С)*(В) = С.
Пример. Примером локи 4 можно взять «комплексные числа». Исторически «корень квадратный» из полярности «минус» был не определён, так как пользовались только двухполярными отношениями. Вместо увеличения числа полярностей в локе, назвали количества подобных полярностей «мнимыми числами» и обозначили (?). Фактически «расщепление» локи 2 и есть четырехполярная лока.
Янтра «комплексных чисел» 1. i — i
2. - + —
3. -i — i
4. + + +
Согласно правилам Янтры (i)*(i) = —, (i)*(-) = — i, (i)*(-i) = +, (-i)*(-i) = —, (-)*(-) = +. Естественно, что при «расщеплении» локи 2 появилось четыре полярности. Кстати, эта приверженность к «действительным» числам и не способность заметить поляризацию стала результатом того, что была пропущена трёхполярная лока. Кроме того, в четырёхполярной локе появилась некоторая особенность в сравнении с двухполярной локой. В двухполярной локе (х + у)*(х — у) = х^2 — у^2, а в четырёхполярной (х + iу)*(х — iу) = х^2 + у^2. Последние можно изобразить геометрически и даёт повод для геометрического изображения комплексных чисел. В дальнейшем эта слепая приверженность толкнет математиков на изобретение ещё расщеплённых лок, кратным исходной двухполярной локе. Так появились октавы, то есть восьмиполярная лока. Можно было расщеплять до шестнадцати, тридцати двух, шестидесяти четырёх полярностей, но это слепое изыскание крайне скучное и бесперспективное. Эту немощь математической мысли мы видим и в алгебре «комплексных чисел», так как алгебра, это взаимодействие поляризованных лок с разной интенсивностью связей.
Пятиполярное пространство
Пятиполярность трудно выполнима в отношениях имеющихся слов, то есть высказываниями. Вряд ли кто задумывается, что слова уже прикреплены к двухполярным отношениям и «окрашены» двухполярной поляризацией. По этой причине, в лучшем случае, можно совершить конформное отображение пятиполярных высказываний на двухполярные понятия. Естественно, что при этом возникнут «абсурды». Кстати, «абсурды», противоречия, парадоксы в самой локе любого размера отсутствуют. Они появляются при насильственном внедрении законов одной локи в другую. Это, кстати, тоже никто пока ещё не понимает, поэтому появляются парадоксы или заявляют о противоречии не подозревая, что противоречие получилось от совмещения разных лок.
Формальный аппарат мышления находится в преимуществе. Символы А, В, С…, в отличие от слов, не наделены отношениями изначально. Кстати, это вновь выдвигает математиков на первое место в истории развития мышления Человека. Слова появятся потом, после получения физических эффектов и технических исполнений, которым будут даны названия. Вот те названия не поймёт никто двухполярным умом. Кстати уже теперь тексты Востока не могут быть адекватно поняты людьми цивилизации Запада из-за отсутствия у них пятиполярного или иного числа полярностей ума.
Законы отношений в пятиполярном пространстве, или пятиполярном уме, лучше находить используя янтру. Свойства янтр не сложные, но избавляют от изнурительных преобразований при нахождении тех или иных законов отношений. Янтра на каждое пространство своя, но алгоритмы нахождения отношений между полярностями — общие.