Выбрать главу

Семиполярное пространство

Янтра семиполярного пространства

Янтра локи 7

1. A B C D E F

2. B D F A C E

3. C F B E A D

4. D A E B F C

5. E C A F D B

6. F E D C B A

7. 0 0 0 0 0 0

Эта Янтра представляет так же особенную локу тем, что здесь три пары полярностей, которые дают единицу и, вместе с тем, две «тройки», которые дают единицу: (А)*(F) = 0, (B)*(E) = 0, (C)*(D) = 0; (A)*(B)*(D) = 0, (C)*(E)*(F) = 0. Лока 7 всецело соответствует законам отношения цветов в свете. Если А? «голубому», В? «желтому», D? «пурпурному», то «голубой» * «желтый» * «пурпурный» = «белый». Если F? «красному», Е? «синему», С? «зелёному», то «красный» * «синий» * «зелёный» = «белый».

При этом:

«голубой» * «красный» = «белый»,

«желтый» * «синий» = «белый»,

«пурпурный» * «зелёный» = «белый».

Более того, согласно Янтры 7:

(А)*(В) = С, то есть «голубой» * «желтый» = «зелёный»,

(В)*(D) = F, то есть «желтый» * «пурпурный» = «красный»,

(A)*(D) = Е, то есть «голубой» * «пурпурный» = «синий»,

(С)*(F) = B, то есть «зелёный» * «красный» = «желтый»,

(С)*(Е) = А, то есть «зелёный» * «синий» = «голубой»,

(Е)*(F) = D, то есть «синий» * «красный» = «пурпурный».

Это и есть свойства цветов солнечного света, а, следовательно, анализатора зрения. Можно теперь отметить, что нечётные локи 3, 5, 7 и другие не имеют включений в себя иных лок, как например, лока 4 и лока 6 включают в себя локу 2.

Восьмиполярное пространство

Янтра восьмиполярного пространства

Янтра локи 8

1. A B C D E F G

2. B D F 0 B D F

3. C F A D G B E

4. D 0 D 0 D 0 D

5. E B G D A F C

6. F D B 0 F D B

7. G F E D C B A

8. 0 0 0 0 0 0 0

«Расщепленные» комплексные числа. 1.??? — ? -? -?

2.? -? +? -?

3.??? — ?? -?

4. - + — + — + —

5. -?? — ? -? -??

6. -? -? + —? -?

7. -? -? -? -???

8. + + + + + + +

Из этой Янтры очевидным является то, что она включает в себя локу 2 («действительные числа») и локу 4 («комплексные числа»). Мы уже знаем, что лока 4 была получена в стихии «мнимых чисел». Теперь, с использованием известных в математике обозначений запишем D?? B?? F??? 0? +. В получается, что А это корень квадратный из?. Обозначим его?. Теперь?^2 =??^3 =??^4 =?^2 =??^5 =???^6 =???^7 =????^8 =?^4 = +. Итак, локу 8 можно назвать «расщеплёнными» комплексными числами. В Янтре мы видим две локи «комплексных чисел». Такое «расщепление» можно продолжить. Следующей будет лока 16, затем 32, 64 и т. д. Однако, как видим, пристрастие к «действительным числам» сделало невидимыми другие равноправные локи. Всякая лока, несмотря на возможное включение в себя лок меньшего размера, обязательно «добавляет» собственные законы отношений. Например, в локе 8 выполняются законы локи 2 как D^2 = 0, то есть (?)*(?) = +; также выполняются законы локи 3 (А)*(В)*(Е) = 0, (C)*(F)*(G) = 0; кроме того, выполняются законы локи 4 (B)*(F) = 0, то есть (?)*(??) = +, а также локи 6 (А)*(С)*(D) = 0. Лока 8 содержит в себе и законы парных отношений локи 7. Здесь так же три пары (А)*(G) = 0, (B)*(F) = 0, (C)*(E) = 0.

Однако лока 8 «соизмерима» локой 2, а нечётные локи 3, 5, 7 не содержат ни одного закона двухполярности. Это значит, что высказывания локи 8 можно конформно отобразить на обыденные понятия линейного ума, но высказывания лок 3, 5, 7 трансцендентальны для этого вида ума.

Пространство любого числа полярностей

Плоскостная лока n — полярностей

1. Число полярностей в локе влияет на законы отношений. Однако есть закономерности при переходе от локи к локе.

2. В чётных локах будет такой «средний» объект С, что С + С = 0.

3. Доказано, что обязан быть нуль в каждой локе такой, что для любого Х будет Х + 0 = Х.

4. Обязана быть хотя бы одна пара объектов Х, Y таких, что X + Y = 0.

Теорема 5.

Если в локе допускается взаимоотношение полярностей А + А, то любая другая полярность образуется некоторым числом полярностей А.

Доказательство.

1. По аксиоме постановки в соответствие взаимодействию А + А ставим в соответствие некоторое В, то есть А + А = В.

2. Тогда для другой пара А + В = С можно записать А + (А + А) = С, то есть 3А = С. Для А + С = D можно записать А + 3А = D, то есть D = 4А. и так далее.

3. Поскольку лока ограничена числом n объектов, то наступит момент, когда N = n A.

Теорема 6.