Выбрать главу

Жаботинский понимал, что периодическую химическую реакцию необходимо изучать методами нелинейной теории колебаний. Для этого следовало прежде всего разработать метод перехода от уравнений, применяемых химиками, от их химической символики к настоящим математическим уравнениям.

Он разработал необходимый метод. Теперь химические уравнения породили уравнения нелинейной теории колебаний. Ничего иного не могло быть. Уравнения описывали шаг за шагом, как энергия, вносимая в реакционный объём самими реактивами, энергия, запасённая в их молекулах, без вмешательства извне порождает периодическую реакцию, периодический процесс.

Уравнения показали, а эксперимент подтвердил, что в химических реакциях возможны и могут быть реализованы аналоги всех явлений, хорошо изученных в радиотехнике. Химические реакции протекали плавно, как процессы в генераторе ван дер Поля, когда концентрации реагирующих веществ изменялись по закону синуса. Или демонстрировали пилообразную зубчатую кривую, свойственную простому генератору, состоящему только из конденсатора, сопротивления и неоновой лампы. Можно в широких пределах изменять период химической реакции, периодически воздействуя на неё дополнительным химическим реактивом или даже периодическими вспышками света. Физики и радиоинженеры называют такое воздействие захватом периода генератора внешней силой. Возможен захват периода одной реакции при воздействии на неё другой химической реакции, имеющей другой период. Физики и инженеры называют это взаимной синхронизацией генераторов. Вряд ли следует перечислят другие аналогии.

Но это далеко не всё. До сих пор речь шла о химических реакциях, протекающих одинаково во всём реакционном сосуде. Эти реакции описывают при помощи обыкновенных дифференциальных уравнений. Методы нелинейной теории колебаний, как известно, применимы к процессам, являющимся едиными, но протекающим несколько по-разному в различных областях пространства. Мы уже обсуждали процесс возбуждения струны смычком, при котором размах колебаний струны закономерно изменяются от ее концов к середине. Подобные процессы возникают в органных трубах и поющих пламенах. Для их описания необходимы более сложные дифференциальные уравнения, включающие в себя описание зависимости процесса как от времени, так и от места в пространстве.

Жаботинский начал новые исследования, убеждённый, что процессы такого рода возможны и в химических системах. Он составил необходимые более сложные математические уравнения, и они подсказали, где следует искать, как создать условия для возникновения неизвестных химических процессов. Углублённые исследования завершились очередным открытием. Совместно с аспирантом А. Н. Заикиным он открыл то, что искал. Теперь реакция шла иначе. Она не охватывала одновременно всего объёма реагирующей смеси. В сосуде возникали и распространялись волны — волны окраски, волны концентраций реагирующих компонентов. Впоследствии академик Р. В. Хохлов назвал их автоволнами, то есть волнами, которые возбуждают и поддерживают сами себя. Это название не ограничивается волнами концентраций химических веществ. Аналогичные волны существуют в экологии, в лазерной технике, в плазме, в полупроводниковых материалах и структурах и во многих других областях, включающих новые эффективные технологические процессы. Химические автоволны обладают внешним отличием от обычных волн. Они разбегаются не увеличивающимися кругами, а подобны раскручивающимся спиралям. Иногда из общей малой области разбегаются по нескольку спиралей.

Примерно в то же время, когда Жаботинский исследовал химические колебания, над развитием термодинамики работал И. Р. Пригожин.

Илья Романович Пригожин — один из интереснейших учёных современности. Он родился в 1917 году в Москве, но жизнь его родителей сложилась так, что он оказался в Бельгии. Стал в 1953 году членом Бельгийской академии наук, а в 1969 году ее президентом. С 1962 года он директор Международного института физики и химии, с 1967 года — директор Центра статистической механики и термодинамики Техасского университета в США.

Работая в области термодинамики и физической химии, он провёл ряд существенных исследований по теории необратимых процессов.

Его вклад в науку — «теория Пригожина», «критерий Пригожина» и многое другое — сделал его одним из ведущих учёных, нобелевским лауреатом 1977 года. С 1982 года он иностранный член АН СССР.

Надо сказать, что ко времени описываемых событий несколько учёных заметили, что применимость классической термодинамики ограничена процессами, протекающими очень медленно, при небольших различиях температур разных частей изучаемой системы. Однако природа знает, а техника создаёт процессы, характеризующиеся огромными разностями температур: работа паровой машины, горение, взрывы, процессы на Солнце и многое другое. Как же протекают эти процессы, как они управляются?