Центральная часть работы Сахарова — квантовая теория возникновения начальных отклонений от равновесия, которую он строит на базе уравнения Шредингера, лежащего в основе квантовой физики.
Существенно, что при этом возникает важное состояние, характеризуемое независимостью плотности энергии от плотности барионов. (Барионы — обобщенное название семейства микрочастиц, обладающих относительно большой массой.)
Статья Сахарова заканчивается параграфом «Космологическая гипотеза». Здесь сосредоточены выводы из проведенного анализа. Квантовые флуктуации, существовавшие в начальный период расширения Вселенной, приводят к тому, что «…первыми образуются «первичные» звезды с массой, меньшей, чем 0,4 массы Солнца». Это происходит приблизительно через 100 лет после Большого взрыва.
«Скопления первичных звезд, содержащие их больше некоторого критического числа, рано или поздно испытывают гравитационный коллапс Толмена — Оппенгеймера — Снайдера — Волкова… (Гравитационный коллапс — неограниченное сжатие больших масс вещества, например очень массивных звезд под действием гравитационных сил — сил тяготения.)
Оценка показывает, что уже через 10б лет возможны коллапсы сверхзвезд с массой 500 солнечных масс… В дальнейшем происходят коллапсы более крупных скоплений вещества… В результате коллапса образуется «послеколлапсовый» объект (ПК-объект), который имеет очень малые размеры и проявляется главным образом своим гравитационным полем». (Послеколлапсовые объекты теперь называют черными дырами.)
Далее Сахаров рассматривает детали эволюции Вселенной, которые позднее были уточнены другими исследователями.
Шаги великана
Следующий шаг Сахаров сделал в короткой заметке «О максимальной температуре теплового излучения», опубликованной 1 июня 1966 года. Это был шаг к началу начал, к моменту, после которого начинается фридмановское расширение. Исходя из сделанного незадолго до того открытия Пензиаса и Уилсона и из модели расширяющейся Вселенной, он предполагает, что материя, существовавшая в начале расширения, состояла из фотонов, гравитонов и нейтрино. (Фотоны — кванты света, гравитоны — кванты поля гравитации, нейтрино — легчайшие частицы; все они лишены электрического заряда.) Плотность материи при этом предполагается столь высокой, что возникает существенное гравитационное взаимодействие фотонов между собой, пренебрежимо слабое в обычных условиях. Эта плотность так велика, что в каждом кубическом сантиметре находилось более чем 1098 фотонов. Анализ процессов, происходящих при такой огромной плотности, позволил Сахарову вычислить важнейшую характеристику начального состояния Вселенной: мешанина из фотонов, гравитонов и нейтрино имела температуру, превышающую 1032 градусов.
26 сентября 1966 года редакция журнала «Письма в журнал экспериментальной и теоретической физики» получила заметку Сахарова «Нарушение CP-инвариантности, С-асимметрия и барионная асимметрия Вселенной». Вот как автор определяет задачу исследования:
«Теория расширяющейся Вселенной, предполагающая сверхплотное начальное состояние вещества, по-видимому, исключает возможность макроскопического разделения вещества и антивещества (то есть раздельного существования отдельных скоплений вещества и антивещества); поэтому следует принять, что в природе отсутствуют тела из антивещества, т. е. Вселенная асимметрична в отношении числа частиц и античастиц (С-асимметрия). В частности, отсутствие антибарионов и предполагаемое отсутствие неизвестных барионных нейтрино означает отличие от нуля барионного заряда (барионная асимметрия). Мы хотим указать на возможное объяснение С- асимметрии в горячей модели расширяющейся Вселенной с привлечением эффектов нарушения CP-инвариантности. Для объяснения барионной асимметрии дополнительно предполагаем приближенный характер закона сохранения барионов». (Инвариантность — независимость от чего-нибудь; СР- инвариантность — независимость от изменения знака заряда «С» и четности «Р».)