Выбрать главу

Надо заметить, что наибольшую научную солидарность по отношению к интеллектуальным достижениям Фейнмана выражал Марк Кац, выдающийся польский и американский математик. Последний стал знаменитым в 1966 году, сформулировав свой вопрос в стиле Фейнмана, более того, затронув в нем тему инструмента, который этот физик обожал:

«Можно ли услышать форму барабана?» В статье, опубликованной под этим названием в журнале American Mathematical Monthly, Кац пытался разобраться, возможно ли вывести геометрию барабана исходя из звукового спектра, который он производит. В общем, ответ был отрицательным.

В своей автобиографии Марк Кац пишет:

«В науке, как в любой другой области человеческого труда, существует два типа гениев: «обычные» гении и «чародеи». Обычный гений — это как вы и я, но бесконечно более умный. Манера, в которой работает его мозг, не является таинством. В тот момент, когда мы поняли, что он сделал, мы чувствуем, что смогли бы сделать то же самое. С чародеями все по-другому. [...] Функционирование их разума до конца нам непонятно. У них почти никогда, а возможно и вообще никогда не было учеников, так как их методы невозможно повторить, и должно быть, ужасное чувство неудовлетворенности охватывает молодой блестящий ум, когда он сталкивался с непроходимыми путями разума чародея. Ричард Фейнман [являлся] чародеем высшей категории».

Фейнман не был обычным физиком и не желал им быть. В то время как все его коллеги для своего первого путешествия за границу выбирали Европу, он решил посетить Бразилию. Сильная любовь соединила его с Арлин и Гвинет — двумя из трех жен, которые были в его жизни, но он также довольно часто увлекался и другими женщинами, однако подобные романы не имели серьезного продолжения.

Фейнман очень редко читал статьи, опубликованные его коллегами, так как он предпочитал собственными усилиями приходить к выводам, которые уже сделали другие. Он исповедовал принцип никогда не доверять идее, которую он не извлекал из себя самого. Такова была отличительная черта Фейнмана, опасное свойство, способное привести к многочисленным ошибкам и потерянному времени — но не для него. «Дик мог сделать все, потому что он был блистателен, — заявил однажды по этому поводу другой физик-теоретик. — Он смог бы подняться босиком на Монблан».

Работа этого любопытного «персонажа» (как он сам себя называл в своей автобиографии) крайне абстрактна. Областью его предпочтения была квантовая теория, которая родилась за несколько лет до него. Установить законы, которые управляют субатомным миром, было сложной задачей, требовавшей участия великих умов физики первой половины XX века. Мир элементарных частиц противоречит здравому смыслу, который основан на нашем повседневном опыте, и понимание этого мира все еще ускользает от нас сегодня. Однако познавательные возможности квантовой физики не вызывают никакого сомнения. Мы можем критиковать ее с точки зрения философии, она даже может показаться нам нелепой, принимая во внимание наше восприятие Вселенной (между прочим, это причина, по которой ее отверг Эйнштейн), но мы не можем закрыть глаза на ее научное и технологическое значение.

Квантовая физика требовала развития многочисленных средств для изучения феноменов, которые она намеревалась объяснить. В период первой половины XX века физикам пришлось использовать математические понятия, разработанные в предыдущие десятилетия (причем никто не верил, что они смогут иметь практическое применение) для того, чтобы решать проблемы, которые возникали перед ними. Но этого было недостаточно: необходимо было разработать совершенно новый математический арсенал. Именно в этой области Ричард Фейнман отличился и сделал самый большой вклад. Одной из наиболее острых проблем, на которую физик должен был обратить внимание в 1930-х годах, было появление бесконечных величин в теории, объясняющей взаимодействие между материей и светом. При попытках просчитать, что происходит в тот момент, когда электрон взаимодействует с фотоном, результат получался катастрофический, так как бесконечные величины извращали подсчеты, и никто не знал, как решить этот вопрос. Ученые были настолько обескуражены, что организовали конгресс, целиком посвященный этому вопросу. Фейнман стал одним из трех физиков, взявшихся за его решение, наряду с японцем Синъитиро Томонагой и американцем Джулианом Швингером. Результатом было создание нового варианта квантовой электродинамики, который актуален и поныне. Также актуальны созданные в тот же период известные диаграммы Фейнмана, которые используются практически во всех дисциплинах физики, связанных с микромиром.

Более того, вклад Фейнмана в физику на этом не заканчивается. Невероятная интуиция привела его к решению загадки жидкого гелия, который при температуре, близкой к абсолютному нулю (-273 °С), может перетекать через край сосуда, где он находится: речь идет о явлении сверхтекучести гелия. Фейнман также внес существенный вклад в создание теории слабого взаимодействия, одного из четырех фундаментальных взаимодействий природы, которое несет ответственность за некоторые радиоактивные распады. Наконец, он помог убедить научное сообщество в том, что кварки, частицы, из которых состоят протоны и нейтроны, открытые его коллегой Марри Гелл-Маном, не являются математической абстракцией, а действительно существуют.

Тем не менее Ричард Фейнман не интересовался только научными исследованиями, его увлекали также популяризация науки и преподавание. Лекции Фейнмана под названием «Что есть наука?» и «Значение науки» остаются источниками вдохновения как для студентов, так и для исследователей. Его лекции по физике собраны в серию книг и продолжают издаваться в течение 50 лет после первой публикации. Они демонстрируют метод Фейнмана, применявшийся им для занятий этой наукой, которая стала его настоящей большой любовью. Его две фразы-талисманы («То, что я не могу создать, я не могу понять» и «Знать, как решить любую решенную проблему») были написаны на доске его аудитории. Физика была страстью Фейнмана, любая физика. Для него наука была в постоянном развитии. Он сравнивал ее с формой облаков: «Когда наблюдаешь за ними, они кажутся застывшими, но через несколько минут ты отдаешь себе отчет, что все поменялось».

Фейнман исследовал уже пройденные пути, но использовал совокупность искусных математических приемов, которые, совмещенные с сильной интуицией ученого, изменяли представления в этой области. Его несколько хаотичный способ работать никогда не следовал канону «аксиома — теорема — доказательство». На самом деле Фейнман предчувствовал результат, а затем проверял его столько раз, сколько это было необходимо, при любых возможных обстоятельствах. Тем не менее он никогда не старался быть оригинальным, скорее его интересовал способ никогда не ошибаться. «Физика всегда меня неотступно преследовала, — объяснял он. — Если идея казалась мне плохой, я это говорил. И если она казалась мне хорошей, я это также говорил».