Непосвященному человеку может показаться, что дело это не особо сложное, — ведь на помощь биологам пришел электронный микроскоп. Возьмите теперь любой микроорганизм, поместите в микроскоп и рассматривайте его строение вплоть до отдельных молекул. Тем более что лучшие марки электронных микроскопов дают возможность не только видеть отдельные крупные молекулы, но позволяют различать даже некоторые детали их строения. Так или примерно так может рассуждать человек, мало знакомый с электронной микроскопией. Но в действительности все обстоит значительно сложнее.
Допустим, мы взяли амеб. Обработали их специальными веществами (фиксаторами), которые убили клетки, но сохранили при этом их прижизненное строение.
Дальше следует длинный ряд всяческих манипуляций и ухищрений, в результате которых клетки, наконец, оказываются нанесенными на специальную сеточку с очень маленькими (100 микрон) ячейками.
Приготовленный таким путем препарат помещаем в электронный микроскоп.
Включаем вакуумные насосы и следим за приборами. Движение стрелки показывает, как создается в колонне микроскопа вакуум. Частички воздуха убираются с пути следования электронов. Но вот вакуум есть. Включаем электронную пушку (так называется та часть микроскопа, где помещается вольфрамовая нить, дающая под действием сильного тока пучок электронов).
Микроскоп работает, его экран светится, и на нем хорошо видно мутно-черное расплывшееся пятно неправильной формы, закрывающее почти все поле зрения. Что же это за пятно?
Как это ни печально, но мы видим клетку, ту самую амебу, детали строения которой так хотелось рассмотреть. Но о каких деталях строения здесь можно говорить, когда нельзя даже различить ядра клетки? Темное пятно! Мрак! Вот все, что мы видим. Клетка оказывается непроницаемой для электронного пучка. Она для этого слишком толста. «Позвольте, — скажете вы, — ведь ее толщина всего несколько микрон». Да, действительно, несколько микрон, всего несколько тысячных долей миллиметра, но для электронов это непреодолимая стена. Стена, поглощающая все электроны и, значит, не прозрачная для электронного пучка. Рассмотреть строение целой клетки в электронный микроскоп не удается. Нужно сделать отдельные срезы, разрезать амебу на тоненькие, прозрачные ломтики, причем толщина таких срезов должна быть 3000–4000 ангстрем, то есть составлять сотые доли микрона. Только в этом случае можно надеяться рассмотреть клеточные структуры и детали их строения.
Но когда мы имеем дело с такими мелкими существами, как вирусы, размеры которых обычно лежат за гранью разрешающей способности светового микроскопа, то их резать нет никакой необходимости: электронный микроскоп позволяет изучать вирусы в целом виде.
Стефан Борисович Стефанов работал с вирусами. Однако его не совсем удовлетворяла общепринятая методика электронно-микроскопического изучения этих объектов. Вирусы приходилось выделять из их среды обитания, очищать, фильтровать, и только в таком рафинированном виде они попадали в электронный микроскоп. Ученому же хотелось изучить вирусы в их естественной обстановке, как выражаются, биологи, в нативном состоянии. Оригинальная методика, дающая такую возможность, и была разработана Стефановым несколько лет назад. Работа с вирусами двинулась вперед, и увлеченный исследователь меньше всего думал о почвенной микрофлоре. Уж слишком далеко в стороне от сферы его научных интересов находилась эта область микробиологии.
Но в то же время в той же Москве другой исследователь горел страстным желанием изучить под электронным микроскопом микробное население почвы. Не устраивали Дениса Ивановича Никитина и общепринятые подходы.
Выделить из почвы или воды отдельные виды микроорганизмов и изучить их строение под электронным микроскопом — дело в конце концов не такое уж сложное.
Но не это было нужно Никитину.
Его интересовала почва в ее естественном состоянии, со всем, что там есть. Вот взять из природы кусочек микромира и рассмотреть с увеличением в десятки тысяч раз. Разве это не заманчиво?!
Но тут на пути встали многие технические трудности.
Приготовить препарат для электронной микроскопии, как известно, вообще не легко, даже когда имеешь дело с простыми и заранее очищенными объектами. Здесь же речь шла о таком сложном конгломерате, как почва. В общем преодолеть методические затруднения Никитину не удавалось, несмотря на многие попытки.